

5 ways Facebook's ludicrous
usage drives Presto innovation

AN NA
H\)/ LIVEONLIN

ello! S

| am Ariel Weisberg

| am here because | forgot presentations are hard

You can find me at prestodb.slack.com

1.
What’s a Presto?

An ANSI SQL Compute engine

Presto TL:DR

Apache 2.0 licensed distributed query engine

Owned by the Linux Foundation

Pluggable connectors allow you to query data where it already resides
Consistent ANSI SQL interface over multiple connectors

Horizontally and vertically scalable

Presto at FB

e Primarily internal usage

e Diverse workload

o O(Tens of thousands) of users issuing queries (directly or indirectly)
o O(Thousands) of query authors
o O(Hundreds of thousands unique queries)

e Repeating “Batch” workload

o Graph of data processing pipelines O(Tens of thousands)
o Hourly, daily, monthly etc.
o Must land the entire graph every day

e Adhoc/Interactive

o Dashboards, alerts, Jupyter notebooks, CLI or similar
o Other tools and systems

Presto economics

e Efficiency
o Workload wants to grow (new use cases, organic growth)
o Capacity growth costs money
o Efficiency decreases required capacity growth
e Memory is at a premium
o Presto originally “in-memory”
o Workload grew to fit (and exceed) available memory
o 0ops, turns out ¥2 memory hardware is more efficient
e Minimizing user impact
o “Fix your query” as a last resort
o Execute problematic queries without tuning

2.
RaptorX

Go real fast with caching

Presto Today: Disaggregated Storage and Physics!

Data is growing exponentially faster than use of compute

get partition info

Resultant Industry trend towards scaling storage and compute : __ listfiles -
independently e.g., Snowflake on S3, AWS EMR on S3, Big Query on -
Google Storage etc. SqQL Planner/ Scheduler

Optimizer

,’ load-balance

Helps customers and cloud providers scale independently, reducing 7 scheduling
cost
Worker

Result

Worker open files

read footers
read data blocks

Data for querying and processing needs to be streamed from remote
storage nodes

New challenge for query latency as scanning huge amounts of data

over the wire is going to be |/O bound when the network is saturated CAPTION: Presto Servers need to retrieve data from remote storage

Distance has increased between compute and storage and overcoming Physics is hard

RaptorX: Hierarchical Caching for Interactive Workloads!

RaptorX's goal is to create a no migration query acceleration solution for
existing Presto customers so that existing workloads can benefit
seamlessly

metastore versioned cache

Challenge is to accelerate interactive workloads that are petabyte scale saL g':i"r:fzzr Scheduler
without replicating data i

,/ soft affinity
7 scheduling

/

Found top opportunities to increase performance by doing a
comprehensive audit of query lifecycle Worker

W

Caching is obviously the answer and not new - however is a lot of work to Worker file desc. & footer cache

manage e.g., cache invalidation etc.! Alluxio data cache

fragment result cache I

What's new is ‘true no-work’ query acceleration; Responses are returned I—.
upto 10x faster with no change in pipelines or queries

CAPTION: Presto with RaptorX smartly caches at every opportunity

Reduce distance between compute and storage intelligently!

RaptorX: 10X faster than Presto!

We see more than 10X increase in query performance
with RaptorX in production at Facebook

TPC-H benchmark between Presto and RaptorX also
confirms the performance difference!

Test was run on a 114 node cluster with 1TTB SSD and 4
threads per task

TPC-H scale factor was 100 in remote storage

Scan and aggregation heavy queries show 10X
improvement (Ql, Q6, Q12-16, Q19 and Q22)

Join heavy queries show between 3X and 5X
improvement (Q2, Q5, Q10, or Q17)

= = N N
o (¥, o w

Latency (second)

w

0

1

2

3

TPC-H Benchmark

6

7 8 10 11 12 13 14 15 16 17 18 19 20 21 22
Query

4 5

Presto RaptorX

CAPTION: Presto + Cache i.e. RaptorX is on average 10X faster

10X better performance with no change in pipelines!

RaptorX economics

e Replaces 4 other tools inside FB!

e In house development is incredibly expensive, redundancy increases cost,
reduces quality

e Provides a single, popular, fully supported SQL dialect to more use cases

e Operational simplicity and efficiency

12

RaptorX g

orX_ Building_a 10X Faster Presto >

y

https://prestodb.io/prestoconday2021.html#Rapt W
w

3.
“Large Batch”

Presto bursting at the seams

Presto’s “Large Batch” approach

e Large Batch
o Long running (hours to days)
o CPU heavy (hundreds of CPU days to years)
o High memory (>2.5tb)
o Skewed (>5gb memory per node)

e Presto-on-Spark - Presto’s Java eval running on Spark as an RDD
e Presto Unlimited - MapReduce on Presto w/o full fault tolerance
e Operator Spilling - Local/remote disk to extend memory for skewed queries

15

https://databricks.com/session_na20/presto-on-apache-spark-a-tale-of-two-computation-engines
https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale

Presto Architecture Overview

e Designed for interactivity
e Classic MPP architecture

e In-memory streaming shuffle
o Low latency
o More operations can be done in parallel

e Standalone, multi-tenant service G
o Always “warm”, no “startup” delay 5

https://research.fb.com/publications/presto-sql-on-
everything/

https://research.fb.com/publications/presto-sql-on-everything/

Presto Unlimited

e Brings MapReduce style - ; ~
processing to MPP database Gm;'p?é‘aec

e Stores intermediate (shuffle) data - —L__ |7 Penserions
on disk | Lesthuees amls]| |

e Allows more granular joins and O w1 Y e)
aggregations processing FiTSh F‘"“s"

e Adds support to run large memory N R e | | |
queries (>2.5TB) R = = s

e Increases reliability by allowing TableScan: TableScan:
partial failure recovery A)

e Can be run on existing Presto

deployments
https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale

https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale

Presto-on-Spark 1000 feet view

Presto SQL Presto Logical Plan Presto Distributed Plan
SELECT ——
age,
count (x) COUNT BY Eagﬁtn
FROM people age COUNT BY

age

GROUP BY age

RDD

// RDD

rdd

.mapToPair(... run Stage 1 operators (SCAN) < , Presto Java
.partitionByKey()

Eval Library

.reduce(... run Stage 2 operators (COUNT BY KEY)<:

.collect() 18

Focusing on Presto-on-Spark

e Obsoletes Presto Unlimited except for startup time

e Provides all the things
Presto SQL queries that scale instead of falil
Hardware fungibility between Presto and Spark (2.2x faster wall time!)
Isolation between queries via containerization and a dedicated Spark Driver per query
Fault tolerance
Fine grained resource allocation and scheduling
Operational simplicity
m One cluster instead of many
m Easy support for elastic capacity
o Scale query execution beyond 600 nodes

© O O O O

19

3.
Velox

Things you should never do, rewriting from scratch

Introducing Velox

New C++ Vectorized execution engine
No SQL parser
No optimizer

Inputs:
o Single stage query plan
o Expression tree
Outputs:

o Vectors
o Serialized vectors

: Functions
Task, Driver (ceil, round, substr)
Operators Aggregate Functions

(count, sum, min)

Expression Evaluation

Connectors
(hive)

Vectors

On-the-wire SerDe
(Presto SerializedPage)

21

Velox Library

e Not intended to fully replace compute engines

e Provide state of the art and universal building blocks for compute
o Embed in various products and services for SQL evaluation
o Hybrid
e Why?
o Efficiency and latency
o Consistency
o Reusability and Engineering Efficiency

e Goal is to partially or fully replace other eval engines
o Presto

Spark

Stream processing

Monitoring engines

ML/AI

Custom applications

O O O O O

Velox economics

e Eval compatibility across engines
e Efficiency and stability

o C++
o Memory management
o Benefits of a complete rewrite

e Efficiency wins shared across more use cases
e Faster wall time for queries

23

4,
Remote UDFs

Sandbox all the things

Existing UDFs

Loaded at deployment time

Run in process with limited isolation
Blocking UDFs are impractical
Don’t want to police UDF quality

25

Stage

Remote project

Local project

Remote project

Local project

UDF
Servers

26

Remote UDF economics

Shared pool of UDFs across multiple systems (Presto, Spark etc.)
UDFs in multiple languages

Scale disaggregated UDF capacity separately

Design discussion issue #14053

27

https://github.com/prestodb/presto/issues/14053

5.
Fireball

Horizontally scale all the things

Presto cluster layout

e 1 coordinator
e 200-1000 nodes

e Coordinator runs many gueries concurrently

o Easily overloaded
o Full GCs and timeouts fail all currently running queries
o Retries and toxic workloads create large blast radius

e Need more capacity? Add more clusters

29

Fireball Architecture

Load Balancer

- Cluster Memory manager
\ - Resource Groups

A

- Analysis/Optimization - Resource Group Aggregation

- State Management . - Discovery
- Tracking Coordinator Pool - Cluster Management
- OOM Killer - Ul Endpoints

- Query Heartbeats

j - Ul redirect

- Discovery

- Query Execution - Worker heartbeats

- Coordination

Worker Pool

Fireball economics

e Operational simplicity
o One cluster per region
o Smaller blast radius for toxic workloads

e Efficiency
o One big resource pool/less fragmentation

e No SPOF
e “Eliminate” coordinator bottleneck
e Support low CPU/Memory coordinators

31

Fireball

X\
https://prestodb.io/prestoconday2021.html#Disa W
2>

y

*

ggregated_Coordinator

6.
Verification

Bonus thing!

Verifier

Shadows production workload comparing two versions
Runs nightly and as a release blocking process
Suspected errors are semi-manually verified

Not a complete solution

Most similar to fuzz testing

Finds weird things that only exist in a real deployment
o Interactions between compute engines and different data formats
o That one query in the entire workload that triggers that planner bug that is 5 years old

34

Thanks! ’

Any questions?

You can find me at;

e prestodb.slack.com

