

5 ways Facebook's ludicrous
usage drives Presto innovation

Hello!

I am Ariel Weisberg
I am here because I forgot presentations are hard

You can find me at prestodb.slack.com

3

1.
What’s a Presto?
An ANSI SQL Compute engine

Presto TL;DR

● Apache 2.0 licensed distributed query engine

● Owned by the Linux Foundation

● Pluggable connectors allow you to query data where it already resides

● Consistent ANSI SQL interface over multiple connectors

● Horizontally and vertically scalable

5

Presto at FB

● Primarily internal usage

● Diverse workload
○ O(Tens of thousands) of users issuing queries (directly or indirectly)

○ O(Thousands) of query authors

○ O(Hundreds of thousands unique queries)

● Repeating “Batch” workload
○ Graph of data processing pipelines O(Tens of thousands)

○ Hourly, daily, monthly etc.

○ Must land the entire graph every day

● Adhoc/Interactive
○ Dashboards, alerts, Jupyter notebooks, CLI or similar

○ Other tools and systems

6

Presto economics

● Efficiency
○ Workload wants to grow (new use cases, organic growth)

○ Capacity growth costs money

○ Efficiency decreases required capacity growth

● Memory is at a premium
○ Presto originally “in-memory”

○ Workload grew to fit (and exceed) available memory

○ Oops, turns out ¼ memory hardware is more efficient

● Minimizing user impact
○ “Fix your query” as a last resort

○ Execute problematic queries without tuning

7

2.
RaptorX
Go real fast with caching

Presto Today: Disaggregated Storage and Physics!

• Data is growing exponentially faster than use of compute

• Resultant Industry trend towards scaling storage and compute
independently e.g., Snowflake on S3, AWS EMR on S3, Big Query on
Google Storage etc.

• Helps customers and cloud providers scale independently, reducing
cost

• Data for querying and processing needs to be streamed from remote
storage nodes

• New challenge for query latency as scanning huge amounts of data
over the wire is going to be I/O bound when the network is saturated

9

CAPTION: Presto Servers need to retrieve data from remote storage

Distance has increased between compute and storage and overcoming Physics is hard

RaptorX: Hierarchical Caching for Interactive Workloads!

• RaptorX’s goal is to create a no migration query acceleration solution for
existing Presto customers so that existing workloads can benefit
seamlessly

• Challenge is to accelerate interactive workloads that are petabyte scale
without replicating data

• Found top opportunities to increase performance by doing a
comprehensive audit of query lifecycle

• Caching is obviously the answer and not new - however is a lot of work to
manage e.g., cache invalidation etc.!

• What’s new is ‘true no-work’ query acceleration; Responses are returned
upto 10x faster with no change in pipelines or queries

10

CAPTION: Presto with RaptorX smartly caches at every opportunity

Reduce distance between compute and storage intelligently!

11

RaptorX: 10X faster than Presto!
• We see more than 10X increase in query performance

with RaptorX in production at Facebook

• TPC-H benchmark between Presto and RaptorX also
confirms the performance difference!

• Test was run on a 114 node cluster with 1TB SSD and 4
threads per task

• TPC-H scale factor was 100 in remote storage

• Scan and aggregation heavy queries show 10X
improvement (Q1, Q6, Q12-16, Q19 and Q22)

• Join heavy queries show between 3X and 5X
improvement (Q2, Q5, Q10, or Q17)

11

CAPTION: Presto + Cache i.e. RaptorX is on average 10X faster

10X better performance with no change in pipelines!

Presto RaptorX

RaptorX economics

● Replaces 4 other tools inside FB!

● In house development is incredibly expensive, redundancy increases cost,

reduces quality

● Provides a single, popular, fully supported SQL dialect to more use cases

● Operational simplicity and efficiency

12

RaptorX
https://prestodb.io/prestoconday2021.html#Rapt

orX_Building_a_10X_Faster_Presto

13

3.
“Large Batch”
Presto bursting at the seams

Presto’s “Large Batch” approach

● Large Batch
○ Long running (hours to days)

○ CPU heavy (hundreds of CPU days to years)

○ High memory (>2.5tb)

○ Skewed (>5gb memory per node)

● Presto-on-Spark - Presto’s Java eval running on Spark as an RDD

● Presto Unlimited - MapReduce on Presto w/o full fault tolerance

● Operator Spilling - Local/remote disk to extend memory for skewed queries

15

https://databricks.com/session_na20/presto-on-apache-spark-a-tale-of-two-computation-engines
https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale

Presto Architecture Overview

● Designed for interactivity

● Classic MPP architecture

● In-memory streaming shuffle
○ Low latency

○ More operations can be done in parallel

● Standalone, multi-tenant service
○ Always “warm”, no “startup” delay

https://research.fb.com/publications/presto-sql-on-
everything/

https://research.fb.com/publications/presto-sql-on-everything/

Presto Unlimited

● Brings MapReduce style
processing to MPP database

● Stores intermediate (shuffle) data
on disk

● Allows more granular joins and
aggregations processing

● Adds support to run large memory
queries (>2.5TB)

● Increases reliability by allowing
partial failure recovery

● Can be run on existing Presto
deployments

https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale

https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale

VELOX

Presto-on-Spark 1000 feet view

Presto SQL

18

RDD

Presto Logical Plan

COUNT BY

age

SCAN

people

Presto Distributed Plan

SCAN

people
COUNT BY

age

Partition

by age

Stage 1 Stage 2

Presto Java

Eval Library

Focusing on Presto-on-Spark

● Obsoletes Presto Unlimited except for startup time

● Provides all the things
○ Presto SQL queries that scale instead of fail

○ Hardware fungibility between Presto and Spark (2.2x faster wall time!)

○ Isolation between queries via containerization and a dedicated Spark Driver per query

○ Fault tolerance

○ Fine grained resource allocation and scheduling

○ Operational simplicity

■ One cluster instead of many

■ Easy support for elastic capacity

○ Scale query execution beyond 600 nodes

19

3.
Velox
Things you should never do, rewriting from scratch

Introducing Velox

● New C++ Vectorized execution engine

● No SQL parser

● No optimizer

● Inputs:
○ Single stage query plan

○ Expression tree

● Outputs:
○ Vectors

○ Serialized vectors

21

Velox Library

● Not intended to fully replace compute engines
● Provide state of the art and universal building blocks for compute

○ Embed in various products and services for SQL evaluation
○ Hybrid

● Why?
○ Efficiency and latency
○ Consistency
○ Reusability and Engineering Efficiency

● Goal is to partially or fully replace other eval engines
○ Presto
○ Spark
○ Stream processing
○ Monitoring engines
○ ML/AI
○ Custom applications

22

Velox economics

● Eval compatibility across engines

● Efficiency and stability
○ C++

○ Memory management

○ Benefits of a complete rewrite

● Efficiency wins shared across more use cases

● Faster wall time for queries

23

4.
Remote UDFs
Sandbox all the things

Existing UDFs

● Loaded at deployment time

● Run in process with limited isolation

● Blocking UDFs are impractical

● Don’t want to police UDF quality

25

26

Remote UDF economics

● Shared pool of UDFs across multiple systems (Presto, Spark etc.)

● UDFs in multiple languages

● Scale disaggregated UDF capacity separately

● Design discussion issue #14053

27

https://github.com/prestodb/presto/issues/14053

5.
Fireball
Horizontally scale all the things

Presto cluster layout

● 1 coordinator

● 200-1000 nodes

● Coordinator runs many queries concurrently
○ Easily overloaded

○ Full GCs and timeouts fail all currently running queries

○ Retries and toxic workloads create large blast radius

● Need more capacity? Add more clusters

29

Fireball Architecture

Resource Manager Pool

Worker Pool

Load Balancer

Coordinator Pool

- Cluster Memory manager

- Resource Groups

- Query Heartbeats

- UI redirect

- Discovery

- Worker heartbeats
- Query Execution

- Coordination

- Analysis/Optimization

- State Management

- Tracking

- OOM Killer

- Resource Group Aggregation

- Discovery

- Cluster Management

- UI Endpoints

Fireball economics

● Operational simplicity
○ One cluster per region

○ Smaller blast radius for toxic workloads

● Efficiency
○ One big resource pool/less fragmentation

● No SPOF

● “Eliminate” coordinator bottleneck

● Support low CPU/Memory coordinators

31

Fireball
https://prestodb.io/prestoconday2021.html#Disa

ggregated_Coordinator

32

6.
Verification
Bonus thing!

Verifier

● Shadows production workload comparing two versions

● Runs nightly and as a release blocking process

● Suspected errors are semi-manually verified

● Not a complete solution

● Most similar to fuzz testing

● Finds weird things that only exist in a real deployment
○ Interactions between compute engines and different data formats

○ That one query in the entire workload that triggers that planner bug that is 5 years old

34

35

Thanks!

Any questions?
You can find me at:

● prestodb.slack.com

36

