0Dgraph

Building A Customer Journey using Domain
Driven Design and GraphQL

Anand Chandrashekar
Customer Success
Dgraph Labs

Agenda

Resources and Introduction

Digital Customer Journeys

Understanding the Ordering Journey

Modeling the Journey Domain using Domain Driven Design
Creating the GraphQL Schema

The Ordering Journey in Action

Dealing with Changes in the Journey

| Resources

e Schemas and other artifacts are available at
https://dgraph.io/blog/post/ddd-with-graphqgl/

e Get Started With Dgraph and GraphQL.:
https://dgraph.io/docs/graphqgl/quick-start/

e Get Started With Dgraph Cloud:
https://dgraph.io/docs/cloud/cloud-quick-start/

https://dgraph.io/blog/post/ddd-with-graphql/
https://dgraph.io/docs/graphql/quick-start/
https://dgraph.io/docs/cloud/cloud-quick-start/

A Brief Introduction to Dgraph

What is Dgraph?
Dgraph is a native GraphQL graph database that is built to be

distributed. This makes it highly scalable, performant, and blazingly fast
— even for complex queries over terabytes of data.

@3 rostcres
.

@MONGODB 9

© patasios | cceece-e

Cloud Graph Platform

Native GraphQL

Dgraph is the only natﬁve GraphQL

database on the market. Zero learning
curve. Built for modern developers.

Blazing fast

Millisecond response speeds on complex,
5+ degree queries at over 15000/s QPS?
No problem!

Flexible schema

Save weeks of work when changing your
schema on the fly with zero downtime. Get
faster iteration and innovation.

Highly scalable

Grow from megabytes to terabytes of data
without worrying about database crashes
or collapse of functionality.

Superior performance

Get fast queries and rapid uploads without
needing a mountain of RAM that costs a
fortune.

Open source

The #1 graph database on GitHub, Dgraph
is freely available with Apache 2.0 license.
The only open source GraphDB that brings
you horizontal scalability and performance.

Digital Customer Journeys

The modern customer expects nuanced digital journeys. For =
example: =
° Order via smart devices
° Leverage location for delivery
. Self service options for payments and returns = @ =
o o

Location-based Delivery

What does it take to build these journeys? (D) =~
. Iterative, Feedback driven development (CD) \E‘/
° Constant refactoring, especially around data

What are the Cha"enges faced by deVelOperS? Voice Driven Ordering Self Service Returns, Payments
° Time taken to continuously update data model
° Refactoring data services due to changes in data model =
e Manage the bindings between processes and data & ﬁ E EE) % son

. . i . GraphQL
These ordering journeys are characterized by a reliance on a mesh

of API-driven apps. JSON and GraphQL are popular options for
building these APIs and apps.

The Ordering Journey

We will explore modeling techniques using GraphQL and Dgraph
that support these rapid iteration needs.

Understanding the Ordering Journey

The Ordering Process has the following 4 steps

° Submit Ordering P
rdaerin rocess
° Acknowledge o
° Shipped
At this stage the The ordering system The address to which The address where
The important entities in the domain are ordered item, —> acknowledges the —> the order is shippedis —> the invoice is to be
quantity and the order and stores the recorded. sent is recorded here.
L CUStomer customer placing the date of acknowledged.
° Product order is recorded.

° The Order and associated Process

Order Process

| Customers | | Product |

Order Journey Domain

Designing the Customer Journey using DDD

Focus area is the Ordering journey, and is
expected to evolve rapidly with market

demands a.k.a our bounded context
Dependencies and interfaces with

our domain, a.k.a. the context map

Our ubiquitous language, i.e. the objects, like
“Item” or “Order”, or “Shipping”, that need
consistent interpretation and operations

Designing the Customer Journey using DDD

Focus area is the Ordering journey, and is
expected to evolve rapidly with market

demands a.k.a our bounded context
Dependencies and interfaces with

our domain, a.k.a. the context map

i

o
! A T E b '

Our ubiquitous language, i.e. the objects, like
9 @ “Item” or “Order”, or “Shipping”, that need

consistent interpretation and operations

\ Add the Business Process Context

Union
OrderJourney
Futune Extendions go here
Type Type Type Type Tyz&:j d ¢
SubmitOrder AcknowledgeOrder ShipOrder InvoiceOrder T)Z;edZdepS =

Parts of the Ordering Journey

T

Interface

OrderJourneyElement

| Apeek into the GraphQL API

v addOrderProcess

v input*:
vorder¥*: query MyQuery {
fromChannel: queryOrderProcess {
id: processStep {
> items: Orcler ... on AcknowledgeOrder {
orderDate: id
» relatedProcess: acknowledgedOn
w processStep:
» acknowledgeOrderRef: }
» invoiceOrderRef: }
» shipOrderRef: Journey Steps }
v submitOrderRef: }
id:
» submittedBy:
updatedOn:

version:

