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SQL use cases: applied

● Query custom data sources
○ Internal business systems
○ Infrastructure: logs, metrics, configs, events, …

● Federated SQL - run queries across multiple sources
○ Data lakes

● Custom requirements
○ New syntax / DSL
○ UDFs
○ Internal optimizations
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What does it take to build an SQL engine?
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Optimization with Apache Calcite
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Optimization with Apache Calcite
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Projects that already use Apache Calcite

● Data Management:
○ Apache Hive
○ Apache Flink
○ Dremio
○ VoltDB
○ IMDGs (Apache Ignite, Hazelcast, Gigaspaces)
○ …

● Applied:
○ Alibaba / Ant Group
○ Uber
○ LinkedIn
○ …

https://calcite.apache.org/docs/powered_by.html
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Parsing

● Goal: convert query string to AST
● How to create a parser?

○ Write a parser by hand? Not practical
○ Use parser generator? Better, but still a lot of work
○ Use Apache Calcite

● Parsing with Apache Calcite
○ Uses JavaCC parser generator under the hood
○ Provides a ready-to-use generated parser with the ANSI SQL grammar
○ Allows for custom extensions to the syntax
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Semantic Analysis

● Goal: verify that AST makes any sense
● Semantic analysis with Apache Calcite

○ Provide a schema
○ (optionally) Provide custom operators
○ Run Calcite’s SQL validator

● Validator responsibilities
○ Bind tables and columns
○ Bind operators
○ Resolve data types
○ Verify relational semantics
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Relational tree
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● AST is not convenient for optimization: complex operator semantics
● A relational tree is a better IR: simple operators with well-defined scopes
● Apache Calcite can translate AST to relational tree



Relational tree
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Operator Description

Scan Scan a data source

Project Transform tuple attributes (e.g. a+b)

Filter Filter rows according to a predicate (WHERE, HAVING)

Sort ORDER BY / LIMIT / OFFSET

Aggregate Aggregate operator

Window Window aggregation

Join 2-way join

Union/Minus/Intersect N-way set operators



Transformations
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● Every query might be executed in multiple alternative ways
● We need to apply transformations to find better plans
● Apache Calcite: custom transformations (visitors) or rule-based transformations 



Transformations: custom
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Custom transformations implemented using a visitor pattern 
(traverse the relational tree, create a new tree):

● Field trimming: remove unused columns from the plan
● Subquery elimination: rewrite subqueries to joins/aggregates



Transformations: rule-based

● A rule is a self-contained optimization unit: pattern + transformation
● There are hundreds of valid transformations in relational algebra
● Apache Calcite provides ~100 transformation rules out-of-the-box!
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Rules
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Examples of rules:

● Operator transpose - move operators wrt each other (e.g., filter push-down)
● Operator simplification - merge or eliminate operators, convert to simpler equivalents
● Join planning - commute, associate

https://github.com/apache/calcite/tree/master/core/src/main/java/org/apache/calcite/rel/rules

https://github.com/apache/calcite/tree/master/core/src/main/java/org/apache/calcite/rel/rules


Rule drivers: heuristic (HepPlanner)

● Apply transformations until 
there is anything to transform

● Fast, but cannot guarantee 
optimality
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Rule drivers: cost-based (VolcanoPlanner)

● Consider multiple plans 
simultaneously in a special 
data structure (MEMO)
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Rule drivers: cost-based (VolcanoPlanner)

● Consider multiple plans 
simultaneously in a special 
data structure (MEMO)

● Assign non-cumulative costs 
to operators

● Maintain the winner for every 
equivalence group

● Heavier than the heuristic 
driver but guarantees 
optimality
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Metadata
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Metadata is a set of properties, common to all operators in the given equivalence group. Used extensively in rules 
and cost functions.

Examples:

● Statistics (cardinalities, selectivites, min/max, NDV)
● Attribute uniqueness

○ SELECT a … GROUP BY a  -> the first attribute is unique
● Attribute constraints 

○ WHERE a.a1=1 and a.a1=b.b1  -> both a.a1 and b.b1 are always 1 and their NDV is 1



Implementing an operator
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● Create your custom operator, extending the RelNode class or one of existing abstract operators
● Override the copy routine to allow for operator copying to/from MEMO (copy)
● Override operator’s digest for proper deduplication (explainTerms)

○ Usually: dump a minimal set of fields that makes the operator unique wrt other operators.
● Override the cost function (computeSelfCost)

○ Usually: consult to metadata, first of all input’s cardinality, apply some coefficients.
○ You may even provide you own definition of the cost



Enforcers

● Operators may expose physical 
properties

● Parent operator may demand a certain 
property on the input 

● If the input cannot satisfy the requested 
property, an enforcer operator is 
injected

● Examples:
○ Collation (Sort)
○ Distribution (Exchange)
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VolcanoOptimizer

Vanilla

● The original implementation of the 
cost-based optimizer in Apache Calcite.

● Optimize nodes in an arbitrary order.
● Cannot propagate physical properties.
● Cannot do efficient pruning.

Top-down

● Implemented recently by Alibaba engineers
● Based on the Cascades algorithm: the guided 

top-down search.
● Propagates the physical properties between 

operators (requires manual implementation).
● Applies branch-and-bound pruning to limit the 

search space.
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Physical property propagation

● Available only in the top-down 
optimizer

● Pass-through (1, 2, 3) - 
propagate optimization request 
to inputs

● Derive (4, 5) - notify the parent 
about the new implementation
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Branch-and-bound pruning

Accumulated cost bounding:

● There is a viable aggregate 
○ Total cost = 500
○ Self cost = 150
○ Input’s budget = 350

● The new join is created
○ Self cost = 450
○ May never be part of an optimal 

plan, prune
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Multi-phase optimization
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● Practical optimizers often split optimization into several phases to reduce the search space, at the cost of 
possibly missing the optimal plan

● Apache Calcite allows you to implement a multi-phase optimizer



Federated queries
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● You may optimize towards different backends simultaneously (federated queries)
○ E.g., JDBC + Apache Cassandra

● Apache Calcite has the built-in Enumerable execution backend that compiles operators into a Java 
bytecode in runtime



Your optimizer
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● Define operators specific to your backend
● Provide custom rules that convert abstract Calcite operators to your operators 

○ E.g., LogicalJoin -> HashJoin
● Run Calcite driver(s) with the built-in and/or custom rules



Example: Apache Flink

● Custom physical batch and streaming operators
● Custom cost: row count, cpu, IO, network, memory
● The custom distribution property with an Exchange enforcer
● Custom rules (e.g., subquery rewrite, physical rules)
● Multi-phase optimization: heuristic and cost-based phases

https://github.com/apache/flink/tree/release-1.12.2/flink-table/flink-table-planner-blink/src/main/scala/org/apache/flink/table/planner
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Summary

● Apache Calcite is a toolbox to build query engines
○ Syntax analyzer
○ Semantic analyzer
○ Translator
○ Optimization drivers and rules
○ The Enumerable  backend

● Apache Calcite dramatically reduces the efforts required to build an optimizer for your backend
○ Weeks to have a working prototype
○ Months to have an MVP
○ Year(s) to have a solid product, but not decades!
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Links

● Speaker
○ https://www.linkedin.com/in/devozerov/
○ https://twitter.com/devozerov

● Apache Calcite:
○ https://calcite.apache.org/
○ https://github.com/apache/calcite

● Demo: 
○ https://github.com/querifylabs/talks-2021-percona

● Our blog:
○ https://www.querifylabs.com/blog
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