
Building Cost-Based Query
Optimizers with Apache Calcite
Vladimir Ozerov
Querify Labs, CEO

SQL use cases: technology

● “Old-school” databases (MySQL, Postgres, SQL Server, Oracle)

2

SQL use cases: technology

● “Old-school” databases (MySQL, Postgres, SQL Server, Oracle)
● “New” products

○ Relational (CockroachDB, TiDB, YugaByte)
○ BigData/Analytics (Hive, Snowflake, Dremio, Clickhouse, Presto)
○ NoSQL (DataStax*, Couchbase*)
○ Compute/streaming (Spark, ksqlDB, Apache Flink)
○ In-memory (Apache Ignite, Hazelcast, Gigaspaces)

● Rebels:
○ MongoDB
○ Redis

* Uses SQL-like languages or builds SQL engine right now

3

SQL use cases: technology

● “Old-school” databases (MySQL, Postgres, SQL Server, Oracle)
● “New” products

○ Relational (CockroachDB, TiDB, YugaByte)
○ BigData/Analytics (Hive, Snowflake, Dremio, Clickhouse, Presto)
○ NoSQL (DataStax*, Couchbase*)
○ Compute/streaming (Spark, ksqlDB, Apache Flink)
○ In-memory (Apache Ignite, Hazelcast, Gigaspaces)

● Rebels:
○ MongoDB
○ Redis

* Uses SQL-like languages or builds SQL engine right now

https://insights.stackoverflow.com/survey/2020

4

https://insights.stackoverflow.com/survey/2020

SQL use cases: applied

● Query custom data sources
○ Internal business systems
○ Infrastructure: logs, metrics, configs, events, …

● Federated SQL - run queries across multiple sources
○ Data lakes

● Custom requirements
○ New syntax / DSL
○ UDFs
○ Internal optimizations

5

What does it take to build an SQL engine?

6

Optimization with Apache Calcite

7

Optimization with Apache Calcite

8

Projects that already use Apache Calcite

● Data Management:
○ Apache Hive
○ Apache Flink
○ Dremio
○ VoltDB
○ IMDGs (Apache Ignite, Hazelcast, Gigaspaces)
○ …

● Applied:
○ Alibaba / Ant Group
○ Uber
○ LinkedIn
○ …

https://calcite.apache.org/docs/powered_by.html

9

https://calcite.apache.org/docs/powered_by.html

Parsing

● Goal: convert query string to AST
● How to create a parser?

○ Write a parser by hand? Not practical
○ Use parser generator? Better, but still a lot of work
○ Use Apache Calcite

● Parsing with Apache Calcite
○ Uses JavaCC parser generator under the hood
○ Provides a ready-to-use generated parser with the ANSI SQL grammar
○ Allows for custom extensions to the syntax

10

Semantic Analysis

● Goal: verify that AST makes any sense
● Semantic analysis with Apache Calcite

○ Provide a schema
○ (optionally) Provide custom operators
○ Run Calcite’s SQL validator

● Validator responsibilities
○ Bind tables and columns
○ Bind operators
○ Resolve data types
○ Verify relational semantics

11

Relational tree

12

● AST is not convenient for optimization: complex operator semantics
● A relational tree is a better IR: simple operators with well-defined scopes
● Apache Calcite can translate AST to relational tree

Relational tree

13

Operator Description

Scan Scan a data source

Project Transform tuple attributes (e.g. a+b)

Filter Filter rows according to a predicate (WHERE, HAVING)

Sort ORDER BY / LIMIT / OFFSET

Aggregate Aggregate operator

Window Window aggregation

Join 2-way join

Union/Minus/Intersect N-way set operators

Transformations

14

● Every query might be executed in multiple alternative ways
● We need to apply transformations to find better plans
● Apache Calcite: custom transformations (visitors) or rule-based transformations

Transformations: custom

15

Custom transformations implemented using a visitor pattern
(traverse the relational tree, create a new tree):

● Field trimming: remove unused columns from the plan
● Subquery elimination: rewrite subqueries to joins/aggregates

Transformations: rule-based

● A rule is a self-contained optimization unit: pattern + transformation
● There are hundreds of valid transformations in relational algebra
● Apache Calcite provides ~100 transformation rules out-of-the-box!

16

Rules

17

Examples of rules:

● Operator transpose - move operators wrt each other (e.g., filter push-down)
● Operator simplification - merge or eliminate operators, convert to simpler equivalents
● Join planning - commute, associate

https://github.com/apache/calcite/tree/master/core/src/main/java/org/apache/calcite/rel/rules

https://github.com/apache/calcite/tree/master/core/src/main/java/org/apache/calcite/rel/rules

Rule drivers: heuristic (HepPlanner)

● Apply transformations until
there is anything to transform

● Fast, but cannot guarantee
optimality

18

Rule drivers: cost-based (VolcanoPlanner)

● Consider multiple plans
simultaneously in a special
data structure (MEMO)

19

Rule drivers: cost-based (VolcanoPlanner)

● Consider multiple plans
simultaneously in a special
data structure (MEMO)

● Assign non-cumulative costs
to operators

20

Rule drivers: cost-based (VolcanoPlanner)

● Consider multiple plans
simultaneously in a special
data structure (MEMO)

● Assign non-cumulative costs
to operators

● Maintain the winner for every
equivalence group

● Heavier than the heuristic
driver but guarantees
optimality

21

Metadata

22

Metadata is a set of properties, common to all operators in the given equivalence group. Used extensively in rules
and cost functions.

Examples:

● Statistics (cardinalities, selectivites, min/max, NDV)
● Attribute uniqueness

○ SELECT a … GROUP BY a -> the first attribute is unique
● Attribute constraints

○ WHERE a.a1=1 and a.a1=b.b1 -> both a.a1 and b.b1 are always 1 and their NDV is 1

Implementing an operator

23

● Create your custom operator, extending the RelNode class or one of existing abstract operators
● Override the copy routine to allow for operator copying to/from MEMO (copy)
● Override operator’s digest for proper deduplication (explainTerms)

○ Usually: dump a minimal set of fields that makes the operator unique wrt other operators.
● Override the cost function (computeSelfCost)

○ Usually: consult to metadata, first of all input’s cardinality, apply some coefficients.
○ You may even provide you own definition of the cost

Enforcers

● Operators may expose physical
properties

● Parent operator may demand a certain
property on the input

● If the input cannot satisfy the requested
property, an enforcer operator is
injected

● Examples:
○ Collation (Sort)
○ Distribution (Exchange)

24

VolcanoOptimizer

Vanilla

● The original implementation of the
cost-based optimizer in Apache Calcite.

● Optimize nodes in an arbitrary order.
● Cannot propagate physical properties.
● Cannot do efficient pruning.

Top-down

● Implemented recently by Alibaba engineers
● Based on the Cascades algorithm: the guided

top-down search.
● Propagates the physical properties between

operators (requires manual implementation).
● Applies branch-and-bound pruning to limit the

search space.

25

Physical property propagation

● Available only in the top-down
optimizer

● Pass-through (1, 2, 3) -
propagate optimization request
to inputs

● Derive (4, 5) - notify the parent
about the new implementation

26

Branch-and-bound pruning

Accumulated cost bounding:

● There is a viable aggregate
○ Total cost = 500
○ Self cost = 150
○ Input’s budget = 350

● The new join is created
○ Self cost = 450
○ May never be part of an optimal

plan, prune

27

Multi-phase optimization

28

● Practical optimizers often split optimization into several phases to reduce the search space, at the cost of
possibly missing the optimal plan

● Apache Calcite allows you to implement a multi-phase optimizer

Federated queries

29

● You may optimize towards different backends simultaneously (federated queries)
○ E.g., JDBC + Apache Cassandra

● Apache Calcite has the built-in Enumerable execution backend that compiles operators into a Java
bytecode in runtime

Your optimizer

30

● Define operators specific to your backend
● Provide custom rules that convert abstract Calcite operators to your operators

○ E.g., LogicalJoin -> HashJoin
● Run Calcite driver(s) with the built-in and/or custom rules

Example: Apache Flink

● Custom physical batch and streaming operators
● Custom cost: row count, cpu, IO, network, memory
● The custom distribution property with an Exchange enforcer
● Custom rules (e.g., subquery rewrite, physical rules)
● Multi-phase optimization: heuristic and cost-based phases

https://github.com/apache/flink/tree/release-1.12.2/flink-table/flink-table-planner-blink/src/main/scala/org/apache/flink/table/planner

31

https://github.com/apache/flink/tree/release-1.12.2/flink-table/flink-table-planner-blink/src/main/scala/org/apache/flink/table/planner

Summary

● Apache Calcite is a toolbox to build query engines
○ Syntax analyzer
○ Semantic analyzer
○ Translator
○ Optimization drivers and rules
○ The Enumerable backend

● Apache Calcite dramatically reduces the efforts required to build an optimizer for your backend
○ Weeks to have a working prototype
○ Months to have an MVP
○ Year(s) to have a solid product, but not decades!

32

Links

● Speaker
○ https://www.linkedin.com/in/devozerov/
○ https://twitter.com/devozerov

● Apache Calcite:
○ https://calcite.apache.org/
○ https://github.com/apache/calcite

● Demo:
○ https://github.com/querifylabs/talks-2021-percona

● Our blog:
○ https://www.querifylabs.com/blog

33

https://www.linkedin.com/in/devozerov/
https://twitter.com/devozerov
https://calcite.apache.org/
https://github.com/apache/calcite
https://github.com/querifylabs/talks-2021-percona
https://www.querifylabs.com/blog

