g Querify Labs

Building Cost-Based Query
Optimizers with Apache Calcite

Vladimir Ozerov
Querify Labs, CEO

SQL use cases: technology

e “Old-school” databases (MySQL, Postgres, SQL Server, Oracle)

SQL use cases: technology

“Old-school” databases (MySQL, Postgres, SQL Server, Oracle)

“New” products
o Relational (CockroachDB, TiDB, YugaByte)

o BigData/Analytics (Hive, Snowflake, Dremio, Clickhouse, Presto)
o NoSQL (DataStax*, Couchbase*)
o Compute/streaming (Spark, ksqlDB, Apache Flink)
o In-memory (Apache Ignite, Hazelcast, Gigaspaces)
e Rebels:
o MongoDB
o Redis

* Uses SQL-like languages or builds SQL engine right now

SQL use cases: technology

e “Old-school” databases (MySQL, Postgres, SQL Server, Oracle)

e “New” products
o Relational (CockroachDB, TiDB, YugaByte)

JavaScript

HTML/CSS

sQL

Python

o BigData/Analytics (Hive, Snowflake, Dremio, Clickhouse, Presto)
o NoSQL (DataStax*, Couchbase*)
o Compute/streaming (Spark, ksqlDB, Apache Flink)
o In-memory (Apache Ignite, Hazelcast, Gigaspaces)
e Rebels:
o MongoDB
o Redis

* Uses SQL-like languages or builds SQL engine right now

https://insights.stackoverflow.com/survey/2020

NEVE]

Bash/Shell/PowerShell

C#

TypeScript

https://insights.stackoverflow.com/survey/2020

SQL use cases: applied

e Query custom data sources
o Internal business systems
o Infrastructure: logs, metrics, configs, events, ...

e Federated SQL - run queries across multiple sources

o Datalakes 1 :
e Custom requirements ?

o New syntax / DSL
o UDFs Repont 3rd party
o Internal optimizations L integrations

Reporting =

L = SQL
@ 4 Usability
AAA

Backends

What does it take to build an SQL engine?

Syntax ans Semantic Intermediate
Analysis Representation

rﬁ;FE-T GROUP BY
(—l SELECT r—> ‘ name I

vy
JOIN

SELECT dept.name, COUNT(*)
FROM emp, dept
WHERE

emp.dept_id = dept.id
GROUP BY dept.name

Query Backend

Optimization with Apache Calcite

Optimization

1 3

Parser

Semantic Analyzer

SOL => | => Plan

Relational Translator

v

Optimizer

% /

Optimization with Apache Calcite

Syntax

Optimization Schema

Nl A
so o | L

Operators 7/
Optimizer

> Metadata
Transformations 8

Cost Model

Projects that already use Apache Calcite

e Data Management:
o Apache Hive

o Apache Flink
o Dremio
o VoltDB
o IMDGs (Apache Ignite, Hazelcast, Gigaspaces)
o
e Applied:
o Alibaba/ Ant Group

o Uber
o LinkedIn
O

https://calcite.apache.org/docs/powered_by.html

https://calcite.apache.org/docs/powered_by.html

Parsing

Goal: convert query string to AST
How to create a parser?

(e]

o

(¢]

Write a parser by hand? Not practical
Use parser generator? Better, but still a lot of work
Use Apache Calcite

Parsing with Apache Calcite

(e]

o

(e]

Uses JavaCC parser generator under the hood
Provides a ready-to-use generated parser with the ANSI SQL grammar
Allows for custom extensions to the syntax

Attributes

s

GROUP BY

Y
JOIN I
L*’\

emp.dept_id

dept.id

10

Semantic Analysis

Goal: verify that AST makes any sense a7

Semantic analysis with Apache Calcite i S l dept.name l
o Provide a schema ,-‘#EROUP =
o (optionally) Provide custom operators <—L§E@—>

o Run Calcite’s SQL validator COUNT(*)
e Validator responsibilities =A_. v
Jemmmt ST ey,
o Bind tables and columns ‘ » JOIN [
o Bind operators , Operator :
dept
o Resolve data types . COUNT | m P
o Verify relational semantics g ‘ Lﬂ.\
. emp.d_ept_ld L) Table
Table = 1% - dept
emp 2 dept.ld A
: 7
“\ Column
Column | ../ Operator | deptid
emp.dept_id =

11

Relational tree

Attributes

¢ name, COUNT(*)
<« sELECT (name | l -

\
Join
JOIN l;:> L&mp.dept_id = dept.id

COUNT(*)

Scan

emp.dept_id
P — P dept

de;;t.id
7
e AST is not convenient for optimization: complex operator semantics

e Arrelational tree is a better IR: simple operators with well-defined scopes

e Apache Calcite can translate AST to relational tree

12

Relational tree

Operator Description

Scan Scan a data source

Project Transform tuple attributes (e.g. a+b)

Filter Filter rows according to a predicate (WHERE, HAVING)
Sort ORDER BY / LIMIT / OFFSET

Aggregate Aggregate operator

Window Window aggregation

Join 2-way join

Union/Minus/Intersect N-way set operators

13

Transformations

Project
name, COUNT(*)

Use
HashJoin

Aggregate
name, COUNT(¥) Change order
l of inputs (HashJoin J

agg.dept_id = dept.id
Join Remove unused Aggregate
emp.dept_id = dept.id columns push-down
N\,
Project StreamAggregate
id, name dept_id, COUNT(*)
Scan
dept Use table Use index
e Every query might be executed in multiple alternative ways

TabIeScan IndexScan)
dept emp
e We need to apply transformations to find better plans

e Apache Calcite: custom transformations (visitors) or rule-based transformations

14

Transformations: custom

Custom transformations implemented using a visitor pattern
(traverse the relational tree, create a new tree):

e Field trimming: remove unused columns from the plan
e Subquery elimination: rewrite subqueries to joins/aggregates

Unnesting Arbitrary Queries

Thomas Neumann and Alfons Kemper
Technische Universitit Miinchen
Munich, Germany
neumann@in.tum.de, kemper@in.tum.de

Abstract: SQL-99 allows for nested subqueries at nearly all places within a query.
From a user’s point of view, nested queries can greatly simplify the formulation of
complex queries. However, nested queries that are correlated with the outer queries
frequently lead to dependent joins with nested loops evaluations and thus poor perfor-
mance.

Existing systems therefore use a number of heuristics to unnest these queries, i.e..
de-correlate them. These unnesting techniques can greatly speed up query processing,
but are usually limited to certain classes of queries. To the best of our knowledge
no existing system can de-correlate queries in the general case. We present a generic
approach for unnesting arbitrary queries. As a result, the de-correlated queries allow
for much simpler and much more efficient query evaluation.

1 Introduction

Subqueries are frequently used in SQL queries to simplify query formulation. Consider
for our running examples the following schema:

o students: {[id, name, major, year,1}

o exams: {[sid, course, curriculum, date, ...]}

Then the following is a nested query to find for cach student the best exams (according to
the German grading system where lower numbers are better):

Ql: select s.name,e.course
from students s,exams e
where s.id=e.sid and
e.grade=(select min(e2.grade)
from exams e2
where s.id=e2.sid)

Conceptually, for each student, exam pair (s, €) it determines, in the subquery, whether or
not this particular exam e has the best grade of all exams of this particular student s.

From a performance point of view the query is not so nice, as the subquery has to be re-
evaluated for every student, exam pair. From a technical perspective the query contains a

383

15

Transformations: rule-based

Pattern

Project !
name, COUNT(*)
Aggregate
name, COUNT(*)
H ' J
Transformation gy dept. ‘.’é“ i .]
Join
emp.dept_id = dept.id
. \ Aggregate
Aé \ dept_id, COUNT(*)
Scan Scan
emp dept
Scan Scan
emp dept

e Arruleis a self-contained optimization unit: pattern + transformation
e There are hundreds of valid transformations in relational algebra

e Apache Calcite provides ~100 transformation rules out-of-the-box!
16

Rules

Examples of rules:

e Operator transpose - move operators wrt each other (e.g., filter push-down)
e Operator simplification - merge or eliminate operators, convert to simpler equivalents
e Join planning - commute, associate

https://qithub.com/apache/calcite/tree/master/core/src/main/java/org/apache/calcite/rel/rules

17

https://github.com/apache/calcite/tree/master/core/src/main/java/org/apache/calcite/rel/rules

Rule drivers: heuristic (HepPlanner)

e Apply transformations until
there is anything to transform
{ D/ J e Fast, but cannot guarantee

Aggregate] optimality

name, COUNT(*)
Join
agg.dept_|i |d dept.id
Join
emp.dept_id = dept.id
Aggregate
dept_id, COUNT(*)
Scan
dept j 5

Scan
emp

Scan
emp

\—

Scan
dept

18

Rule drivers: cost-based (VolcanoPlanner)

Join
lemp.dept_id = dept.id

TN
,GK
Aggregate Project
name, COUNT(*) name, COUNT()
l \o’":‘\
PN !)
J

< \
/ \
1G3}
\ Y.

s
Join
mp.dept_id = dept.id

Join
agg.dept_id = dept.id

Aggregate)
dept_id, COUNT(*)

Consider multiple plans
simultaneously in a special
data structure (MEMO)

19

Rule drivers: cost-based (VolcanoPlanner)

. 1G4 e Consider multiple plans
po— e simultaneously in a special
name, COUNT(¥) name, COUNT(*) J data Structure (M EM O)
J(\G6 e Assign non-cumulative costs

"‘ 3 3 0 to operators

\.
<.

475
Join
mp.dept_id = dept.id

?)}
Aggregate [
dept_id, COUNT(*)

J

Scan Scan
L emp] j’ dept a 20

Rule drivers: cost-based (VolcanoPlanner)

_---~, Winner: Project

{G4
200 o 50
)
N Aggregate Project
/" Y name, COUNT(*) name, COUNT(*)
(G4}
500 l o4 l \9;--1\\\
\ G6
Aggregate ‘G3} i
name, COUNT(*) } 350
475 Join
Join agg.dept_id = dept.id |

mp.dept_id = dept.id|

—>

475

Join 3
emp.dept_id = dept.id)
= Aggregate
o dept_id, COUNT(*)

(61} {c2)
150 _§ T 100

150] T 100

Consider multiple plans
simultaneously in a special
data structure (MEMO)
Assign non-cumulative costs
to operators

Maintain the winner for every
equivalence group

Heavier than the heuristic
driver but guarantees
optimality

21

Metadata

Metadata is a set of properties, common to all operators in the given equivalence group. Used extensively in rules
and cost functions.

Examples:

e Statistics (cardinalities, selectivites, min/max, NDV)

e Attribute uniqueness
o SELECT a .. GROUP BY a ->the first attribute is unique

e Attribute constraints
0O WHERE a.al=1 and a.al=b.bl ->botha.al andb.bl are always 1 and their NDV is 1

22

Implementing an operator

Create your custom operator, extending the Re1Node class or one of existing abstract operators
Override the copy routine to allow for operator copying to/from MEMO (copy)
Override operator’s digest for proper deduplication (explainTerms)
o Usually: dump a minimal set of fields that makes the operator unique wrt other operators.
e Override the cost function (computeSelfCost)

o Usually: consult to metadata, first of all input’s cardinality, apply some coefficients.
o You may even provide you own definition of the cost

23

Enforcers

e Operators may expose physical

properties
e Parent operator may demand a certain
pyrsmey pRs— prope'rty on the input .
[shardKey=city] [shardKey=city] e If the input cannot satisfy the requested

property, an enforcer operator is

Enforce Exer injeCted

sharding > CSowee | e Examples

by city! ? o Collation (Sort)

J) o Distribution (Exchange)

Person Person
[shardKey=id] [shardKey=id]

24

VolcanoOptimizer

Vanilla Top-down
e The original implementation of the e Implemented recently by Alibaba engineers
cost-based optimizer in Apache Calcite. e Based on the Cascades algorithm: the guided
Optimize nodes in an arbitrary order. top-down search.
Cannot propagate physical properties. e Propagates the physical properties between
Cannot do efficient pruning. operators (requires manual implementation).

e Applies branch-and-bound pruning to limit the
search space.

25

Physical property propagation

e Available only in the top-down

r =] optimizer
[a ASC] e Pass-through (1,2, 3) -
f propagate optimization request
1. Can you 5. Sorting is)
sort by [a]? not needed r Project to Inputs
Y a=b+l e Derive (4, 5) - notify the parent
(Project } ,—_—1_1> about the new implementation
2. Can you 4. Use this ([slggt?:f ﬁ;nb] J
sort by [b]? index X
TableScan [slg:i::ys ;;nb]

3. Yes, there is a sorted
index on [b]

26

Branch-and-bound pruning

Accumulated cost bounding:

—— e There is a viable aggregate
total: 500 = 50+100+200+150 o Total cost = 500
Aggregate o Self cost =150
1 PRUNED! o Inpflt's b.udget =350
e The new join is created
self: 200 self: 300 o Self cost = 450
total: 350 = 50+100+200 total: 450 = 50+100+300

T, o May never be part of an optimal
HashJoin HashJoin
l AxB ! [BxA] plan, prune

Commute Rule A
self: 100 self: 50 II: self: 50
total: 100 total: 50 total: 50

" "% m

self: 100
total: 100

A B

27

Multi-phase optimization

Initial
plan

Optimized
plan

Phase 1 Phase 2
(heuristic) (cost-based)

e Practical optimizers often split optimization into several phases to reduce the search space, at the cost of
possibly missing the optimal plan
e Apache Calcite allows you to implement a multi-phase optimizer
28

Federated queries

B1
ﬁ name, COUNT(*) I

Aggregate
name, COUNT(¥)

B1 Join
agg.dept_id = dept.id

>

B1 Project B2 Aggregate
id, name dept_id, COUNT(*)

Join
emp.dept_id = dept. ldL

! !
077) U 7))

e You may optimize towards different backends simultaneously (federated queries)
o E.g., JDBC + Apache Cassandra
e Apache Calcite has the built-in Enumerable execution backend that compiles operators into a Java

bytecode in runtime 29

Your optimizer

Project
name, COUNT(*)
Aggregate j U
se
name, COUNT(*) Change order HashJoin

of inputs HashJoin
agg.dept_id = dept.id
Join Remove unused Aggregate
emp.dept_id = dept.id columns push-down
Project StreamAggregate
id, name dept_id, COUNT(*)

Use table Use index

TableScan IndexScan
dept emp
e Define operators specific to your backend

e Provide custom rules that convert abstract Calcite operators to your operators
o E.g,Logicaldoin -> HashJoin
e Run Calcite driver(s) with the built-in and/or custom rules 30

Example: Apache Flink

Custom physical batch and streaming operators

Custom cost: row count, cpu, 10, network, memory

The custom distribution property with an Exchange enforcer
Custom rules (e.g., subquery rewrite, physical rules)
Multi-phase optimization: heuristic and cost-based phases

https://github.com/apache/flink/tree/release-1.12.2/flink-table/flink-table-planner-blink/src/main/scala/orq/apache/flink/table/planner

31

https://github.com/apache/flink/tree/release-1.12.2/flink-table/flink-table-planner-blink/src/main/scala/org/apache/flink/table/planner

Summary

e Apache Calcite is a toolbox to build query engines

Syntax analyzer

Semantic analyzer

Translator

Optimization drivers and rules

The Enumerable backend

e Apache Calcite dramatically reduces the efforts required to build an optimizer for your backend
o Weeks to have a working prototype
o Months to have an MVP
o Year(s) to have a solid product, but not decades!

o O O O O

32

Links

e Speaker
o https://www.linkedin.com/in/devozerov/

o https://twitter.com/devozerov
e Apache Calcite:

o https://calcite.apache.orqg/
o https://github.com/apache/calcite

e Demo:
o https://github.com/querifylabs/talks-2021-percona
e Ourblog:

o https://www.querifylabs.com/blog

33

https://www.linkedin.com/in/devozerov/
https://twitter.com/devozerov
https://calcite.apache.org/
https://github.com/apache/calcite
https://github.com/querifylabs/talks-2021-percona
https://www.querifylabs.com/blog

