
CDC on Statement Based Replication (SBR)

Venkat Morampudi, Staff Software Engineer

Agenda / Introduction to CDC

/ MySQL Replication Streams

/ Implementing CDC on SBR

/ CDC at Box

 3CDC on Statement Based Replication

Introduction to CDC

 4CDC on Statement Based Replication

Change Data Capture is a design pattern that enables capturing
changes to data and notifying actors so they can react

accordingly

Change Data Capture (CDC)

 5CDC on Statement Based Replication

Anatomy of a CDC event

• CDC event is composed of
• Pre-mutation state of the row (before)

• Post-mutation state of the row (after)

• Metadata
• Table

• Primary key

• Mutation type

{
 "metadata": {
 ”primary_key": 2,
 ”table": "fruit",
 "mutation_type": ”update",
 "timestamp": 1611179777
 },
 ”before": {
 "id": 2,
 "name": ”banana",
 "quantity": 950,
 ”expiry_date": “2020-01-02”

 },
 ”after": {

 "id": 2,
 "name": ”banana",
 "quantity": 720,
 ”expiry_date": “2020-01-02”

 },

}

 6CDC on Statement Based Replication

Typical CDC Pipeline Architecture for MySQL

MySQL
PrimaryApplication

MySQL
Replica

MySQL
Replica

CDC Service Message
Bus

RBR

RBR

RBR

Binlog
format set

to ROW

CDC

R/W

 7CDC on Statement Based Replication

Different Types of MySQL Replication Streams

• Row-based Replication (RBR)

• Statement-based Replication (SBR)

 8CDC on Statement Based Replication

Row-based Replication (RBR)

• The binary log stores the record-level
changes that occur to database tables

• State of the row before and after can be
extracted from the Binlog event

• Binlog event doesn't contain the table
metadata, i.e. it does not record the
field names, only field number.

UPDATE `super_market`.`fruit`

WHERE

@1=1 /* INT meta=0 nullable=0 is_null=0 */

@2= 'pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

@3=273 /* INT meta=0 nullable=0 is_null=0 */

SET

@1=1 /* INT meta=0 nullable=0 is_null=0 */

@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

@3=573 /* INT meta=0 nullable=0 is_null=0 */

at 569

UPDATE `super_market`.`fruit`

SET quantity= quantity + 300

WHERE name = 'pear'

binlog

query

 9CDC on Statement Based Replication

Statement-based Replication (SBR)

• The binary log stores the SQL statements
used to change databases

• Binlog event doesn’t contain pre-mutation
state nor post-mutation state

UPDATE `super_market`.`fruit`

SET quantity= quantity + 300

WHERE name = 'pear'

UPDATE `super_market`.`fruit`

SET quantity= quantity + 300

WHERE name = 'pear'

query

binlog

 10CDC on Statement Based Replication

RBR vs SBR
Summary

Requirements for CDC event RBR SBR

table

primary key

mutation type

before

after

 11CDC on Statement Based Replication

Implementing CDC on SBR

 12CDC on Statement Based Replication

How do we get the pre-mutation state

 13CDC on Statement Based Replication

Our Solution

SQL Comments

 14CDC on Statement Based Replication

• MySQL supports placing comments within SQL statements

• MySQL ignores comments when parsing SQL statements

• Comments are preserved in the binlog with statement-based replication

MySQL Query Comments

select name, quantity from fruit where id in (123, 456) /*
trace_id=8826724f58f5586a.8826724f58f5586a<:8826724f58f5586a
&application=webapp
&user_id=12576
*/

Sample query with
comments

 15CDC on Statement Based Replication

Mechanics of Appending Pre-mutation State to Comments

Encode row into
portable format

Append encoded
row to query

comment
Execute query

Lock and load
the row

 16CDC on Statement Based Replication

• Fully typed

• Schema support

• Schema evolution support

• Compact output

• Encoded binary data should be very compact, so it takes up less storage space

• Separate the schema from the encoded data

• Very fast

Requirements for Serializer

 17CDC on Statement Based Replication

Avro for Serialization

Requirements for Serializer

Fully Typed with Schema

Schema Evolution

Compact

Separate Schema from Data

Pretty Fast

 18CDC on Statement Based Replication

• Avro schema of encoded pre is stored in Confluence Schema Registry

• Every schema stored in Schema Registry has a numeric id associated with it

• Schema Id is appended to Query comments

Schema Store

Application

Schema Registry

CDC Service

1. W
rite schema

2. Id for schema

5. Get schema for id

Query
Comments

3. Append
schema id

4. Get
schema id

6. Schema

 19CDC on Statement Based Replication

Sample Query Comment

/*
trace_id=8826724f58f5586a.8826724f58f5586a<:8826724f58f5586a
&application=webapp
&pre_mutation_snapshot_schema_id=1091
&pre_mutation_snapshot_binary=FQQoYXQlZF9sxS5rXXISMTXSMQXzMDQSMDECssKQ1EoCFQESMDISMzX0MDXxX
hQmdS5QLXRlc3QCZQQoYXQlZF9sxS5rX2Zvcl9CX1ZvdmFfR2FsY2hlbmtvQ3QfZmlsZV8xMDXyMDMSMzXSMQQgc
GFzc3dvcmRfZm9yX0IgVm92YSBHYSxQxGVux28QcyBmxSxlIDESMDISMzXzMDXxXgXSc2hhcmVkX2xpbmsXXhYxMD
XyMDMSQDXSMgK0So3USgISMTXSMQXzMDQSMDICEmZ1bmMtdGVzdXQmc2hhcmVkX2xpbmtfZm9yX0QfVm92YV
9HYSxQxGVux28Qc19mxSxlXzESMDISMzXzMDXyXmBSYXQzd29yZF9mb3QfQiBSb3ZhIEdhbGQoZS5rbydzIGZpbGUg
MTXSMQXzMDMSMDICXX==
*/

 20CDC on Statement Based Replication

Caveats with comments

Inclusion of pre-mutation
state in comments results
in query size explosion

Binlog files may get too big May need to impose
restrictions on the
mutation cardinality

• May need to increase
max_allowed_packet

• Our existing
max_allowed_packet value is big
enough to support our needs

• p99 of query size increase is less
than 100KB for us

• Might affect binlog file
retention period on disk

• Not any worse than Row-Based
Binlogs

• Additional 6-8MB/sec data
added to our binlogs across all
the shards

• Protects from appending very
large pre-mutation binaries to
comments

 21CDC on Statement Based Replication

Recap

Requirements for CDC event SBR

table

primary key

mutation type

before

after

SQL
Comments

 22CDC on Statement Based Replication

Computing post-mutation state & primary key

 23CDC on Statement Based Replication

• Provides a uniform way to interact with relational data at Box

• Primarily responsible for protecting MySQL

• Provides strongly opinionated APIs supporting limited set of data access patterns

Credence
Distributed Data Access Service at Box

 24CDC on Statement Based Replication

Credence Architecture

CredenceApplications

MySQL
Replicas

MySQL
Primaries

Caches

 25CDC on Statement Based Replication

• Multi-row inserts with explicit column values

• Conditional updates only by primary key

• New column values are explicit

• Delete only by primary key

Mutation Queries Supported By Credence

UPDATE `super_market`.`fruit`
SET
 quantity = CASE WHEN id = 1 THEN 88 WHEN id = 2 THEN 950 ELSE quantity END
WHERE id IN (1 ,2)

INSERT INTO `super_market`.`fruit` (id ,name ,quantity ,expiry_date)
VALUES
 (1 ,‘apple’ ,100 ,‘2021 - 01 - 01 ’) ,
 (2 ,’banana’ ,950 ,‘2021 - 01 - 02 ’)

DELETE FROM `super_market`.`fruit`
WHERE id IN (1 ,2)

Insert

Updat
e

Delete

 26CDC on Statement Based Replication

Queries Not Supported by Credence

Mutation queries with
MySQL computed column
values

Delete/Update queries
with unbounded where
clause

• ex: update fruit set quantity =
quantity + 100 where id = 2

• Clients who need to execute
this kind of query would read
the locked row to compute final
values before executing
mutation queries in a
transaction

• ex: delete fruit where
expiry_date <1609509729

• Clients who need to execute
this kind of query would load
the primary keys first using the
read apis and issue delete
queries using primary keys in a
transaction

 27CDC on Statement Based Replication

• Parse mutation queries to extract columns modified and their new values (diff) as well primary keys

• Post can be computed by merging pre-mutation state with diff within CDC pipeline

• post = pre + diff

• No additional changes to query size

How to Compute Post-mutation State & PK

 28CDC on Statement Based Replication

Compute Post-mutation State & PK for Insert

INSERT INTO `super_market`.`fruit` (id, name , quantity, expiry_date)
VALUES
 (1 ,‘apple’ ,100 ,‘2021 - 01 - 01 ’)
/*
trace_id=8826724f58f5586a.8826724f58f5586a<:8826724f58f55
86a
&application=webapp
*/

 29CDC on Statement Based Replication

Compute Post-mutation State & PK for Insert

 (id, name , quantity, expiry_date)
(1 ,‘apple’ ,100 ,‘2021 - 01 - 01 ’)

Raw diff

Columns
changed

New values

id 1

name apple

quantity 100

expiry_date 2021-01-01

diff

 30CDC on Statement Based Replication

Compute Post-mutation State & PK For Insert

Columns
changed

New values

id 1

name apple

quantity 100

expiry_date 2021-01-01

diff

Columns
changed

New values

id 1

name apple

quantity 100

expiry_date 2021-01-01

post

 31CDC on Statement Based Replication

UPDATE `super_market`.`fruit`
SET quantity = CASE WHEN id = 1 THEN 88 ELSE quantity END
WHERE id IN (1)
/*
trace_id=8826724f58f5586a.8826724f58f5586a<:8826724f58f558
6a
&application=webapp
&pre_mutation_snapshot_schema_id=1091
&pre_mutation_snapshot_binary=FQQoYXQlZF9sxS5rXXISMTXSM
QXzMDQSMDECssKQ1EoCFQESMDISMz==
*/

Compute Post-mutation State & PK for Update

 32CDC on Statement Based Replication

Compute Post-mutation State & PK For Update

Columns
changed

New values

quantity 88
quantity = CASE WHEN id = 1 THEN 88
ELSE quantity END

Raw diff

diff

pre_mutation_snapshot_schema_id=1091&
pre_mutation_snapshot_binary=FQQoYXQl
ZF9sxS5rXXISMTXSMQXzMDQSMDECss
KQ1EoCFQESMDISMzX0MDXxXhQmdS5
QLXRlc3QCZQQoYXQlZF9sxS5rX2Zvcl9
CX1ZvdmF==

Raw pre
Columns
changed

New values

id 1

name apple

quantity 100

expiry_date 2021-01-01

pre

 33CDC on Statement Based Replication

Columns
changed

New values

id 1

name apple

quantity 100

expiry_date 2021-01-01

Columns
changed

New values

id 1

name apple

quantity 88

expiry_date 2021-01-01

post

Compute Post-mutation State & PK for Update

pre

Columns
changed

New values

quantity 88

diff

 34CDC on Statement Based Replication

• Query parsing can get complicated and often error prone

• Binlog tailer implementation is tightly coupled with data access service that creates and executes queries

Downside of Parsing Queries

 35CDC on Statement Based Replication

Techniques to Avoid Query Parsing

/ Append diff to query
comments

/ Append post-mutation
state to query comments

Both options results in further explosion of query and binlog file size

 36CDC on Statement Based Replication

Implementing CDC on SBR - Recap

Requirements for CDC event SBR

table

primary key

mutation type

before

after

SQL
Comments

Query
Parsing

Query
Parsing

 37CDC on Statement Based Replication

CDC at Box

 38CDC on Statement Based Replication

CDC at Box
Architecture

MySQL
PrimaryCredence

MySQL
Replica

MySQL
Replica

CDC Binlog
Tailer

Kafka
SBR

SBR

SB
R

Binlog
format set

to
STATEMEN

T

Schema
Registry

Checkpoint
Store

PGTID

R/W

 39CDC on Statement Based Replication

Scale of CDC at Box

100s
MySQL Shards

10,000s
CDC events per sec

10s
CDC Consumers

Venkat Morampudi
vmorampudi@box.com

