
Going the distance

Copying data over high latency network links

Peter Boros
Principal Architect @ Percona

© 2021 Percona

About me

- Principal Architect at Percona
- Focused on automation and performance tuning
- Among others, worked at Dropbox, Zuora, Sun microsystems

2

© 2021 Percona

Agenda

- Long distance copy: What is the difference?
- Measurement setup
- Some TCP/IP
- Benchmarking
- Parallel TCP streams
- Copying an existing backup
- Streaming backups

3

Long distance copies

© 2021 Percona

What? Why?

- Long distance means more latency
- Not necessarily less bandwidth

- Disaster recovery purposes
- Data in distant environment: we need initial copy
- This may be repeated through the lifecycle of the DR environment

- Moving data to the cloud or between cloud providers
- Disaster recovery testing (practice exercises)
- Read replicas in remote regions

5

First: measure

© 2021 Percona

Measurement setup

- Actual databases or data are not needed to validate the methods
- Used AWS

- This discussed here are general
- Various instance types in the same region (us-west-2)
- Various instance types between 2 distant regions (eu-central-1)
- The problem itself is not database related
- Tested with t2.micro instances

- Results are reproducible in the free tier
- Larger instances will have more consistent speeds

7

© 2021 Percona

Some theory: TCP window scaling

8

Data X

Ack X

- By default, TCP is not great over high
latency links

- Sliding window mechanics of TCP are here
to help

- Sending the next packet doesn’t need to
wait for the acknowledgment

- Selective acknowledgement (sack) helps
to acknowledge multiple packets with a
single answer

- Adjusted dynamically

© 2021 Percona

Ubuntu 20.04 defaults

net.core.wmem_default = 212992

net.core.wmem_max = 212992

net.ipv4.tcp_wmem = 4096 16384 4194304

net.core.rmem_default = 212992

net.core.rmem_max = 212992

net.ipv4.tcp_rmem = 4096 131072 6291456

net.ipv4.udp_rmem_min = 4096

net.ipv4.tcp_window_scaling = 1

9

© 2021 Percona

Default iperf same region

iperf3 -s -p 9001

Server listening on 9001

10

iperf3 -c 1.2.3.4 -p 9001
…
[5] 0.00-10.00 sec 1.03 GBytes 883 Mbits/sec 4698
sender

© 2021 Percona

Same region, but limiting the window size

iperf3 -s -p 9001

Server listening on 9001

11

iperf3 -c 1.2.3.4 -p 9001 -w 1400
…
[5] 0.00-10.00 sec 18.2 MBytes 15.3 Mbits/sec
receiver

Promising!

© 2021 Percona

Different (us-west-2, eu-central-1)

iperf3 -s -p 9001

Server listening on 9001

13

iperf3 -c 1.2.3.4 -p 9001
…
[5] 0.00-10.14 sec 77.7 MBytes 64.3 Mbits/sec
receiver

© 2021 Percona

Some tuning for high latency

net.core.wmem_max = 33554432
net.core.rmem_max = 33554432
net.ipv4.tcp_rmem = 10240 87380 33554432
net.ipv4.tcp_wmem = 10240 87380 33554432
net.core.netdev_max_backlog = 5000

14

© 2021 Percona

Different (us-west-2, eu-central-1)

iperf3 -s -p 9001

Server listening on 9001

15

iperf3 -c 1.2.3.4 -p 9001 -w 8388608
…
[5] 0.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec
receiver

© 2021 Percona

Not great results

- Slight but consistent difference
- Requesting a larger windows at the iperf level doesn’t make much

difference
- We already had

- net.ipv4.tcp_sack = 1
- net.ipv4.tcp_window_scaling = 1

- Tunables are available on a per connection basis
- Several applications support it (for example bbcp)

16

Parallelism

© 2021 Percona

Single vs multiple streams

18

src dst

src dst

© 2021 Percona

Different (us-west-2, eu-central-1)

iperf3 -s -p 9001 -P 4

Server listening on 9001

19

iperf3 -c 1.2.3.4 -p 9001
…
[5] 0.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec
receiver
[SUM] 0.00-10.14 sec 254 MBytes 210 Mbits/sec
receiver

© 2021 Percona

Different (us-west-2, eu-central-1)

iperf3 -s -p 9001 -P 6

Server listening on 9001

20

iperf3 -c 1.2.3.4 -p 9001
…
[5] 0.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec
receiver
[SUM] 0.00-10.14 sec 383 MBytes 317 Mbits/sec
receiver

© 2021 Percona

Different (us-west-2, eu-central-1)

iperf3 -s -p 9001 -P 16

Server listening on 9001

21

iperf3 -c 1.2.3.4 -p 9001
…
[5] 0.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec
receiver
[SUM] 0.00-10.14 sec 578 MBytes 478 Mbits/sec
receiver

© 2021 Percona

Parallel TCP streams

- Different source port for each stream
- Not necessarily different destination port for each stream

- Depends on the implementation
- With one destination port, the listener needs to handle IO multiplexing

22

Parallel streams is the way
to go!

© 2021 Percona

Can be useful even locally

- Modern, high performance network controllers
- Can’t be saturated with a single stream
- Have multiple interrupt channels for both TX and RX

24

Copying an existing backup

© 2021 Percona

Copying existing backup

- Have a set of files to copy
- Want to copy them using multiple TCP streams
- Normal methods could be scp, tar | nc, all single streamed

26

© 2021 Percona

bbcp

- Does exactly this
- Using SSH for control channel
- Seems like SCP, but it’s not
- Control traffic is encrypted, data is not!

27

© 2021 Percona

bbcp setup (Ubuntu 20.04)

sudo apt-get install libssl-dev build-essential zlib1g-dev git

git clone https://www.slac.stanford.edu/~abh/bbcp/bbcp.git/

cd bbcp/src

make

sudo cp ../bin/amd64_linux/bbcp /bin/bbcp

bbcp --version

28

© 2021 Percona

bbcp example

bbcp \

-P 16 \

-Z 9001:9016 -r testdir ubuntu@dest_machine:/home/ubuntu/

Caveats!

- Doesn’t handle ~ (it’s like scp but it’s not)
- The bbcp binary must be in the path of the receiving machine
- Bi-directional communication is needed (receiver connects back to sender)
- Data is not encrypted

29

Parallel xtrabackup

© 2021 Percona

Parallel xtrabackup

- xbstream will emit a single stream that can be copied
- nc, socat and the likes are using a single stream

- will be inefficient on high latency links
- network copy if often the bottleneck

31

Out of the box: xbcloud and
object storage

© 2021 Percona

xbcloud

- xbstream will emit a single stream that can be copied
- nc, socat and the likes are using a single stream

- will be inefficient on high latency links
- network copy if often the bottleneck
- xbcloud to the rescue

- copy first to the object storage, copy within the object storage to
another region

- both can be parallel

33

© 2021 Percona

xbcloud example

$ xtrabackup --backup --stream=xbstream --parallel=10
--extra-lsndir=/tmp --target-dir=/tmp | \
xbcloud put --storage=s3 \
--s3-endpoint='s3.amazonaws.com' \
--s3-access-key='YOUR-ACCESSKEYID' \
--s3-secret-key='YOUR-SECRETACCESSKEY' \
--s3-bucket='mysql_backups'
--parallel=10 \
$(date -I)-full_backup

34

© 2021 Percona

s3 region copy example

$ aws s3 cp s3://src-bucket-region-1/ \
 s3://target-bucket-region-2/ \
 --recursive \
 --source-region region-1 \
 --region region-2 \
 --max-concurrent-requests=50

35

© 2021 Percona

Summary

- Use xbcloud to copy to object storage
- Copy the data to another region of the object storage

- Or specify the remote region for xbcloud
- Restore locally from the target object storage
- The example was for AWS and S3, but xbcloud works for other object

storage too
- You will get the high throughput as you would get with bbcp

36

Reading a stream in chunks

© 2021 Percona

Reading the stream in chunks

- How does it work part
- A stream can be read in chunks locally
- The chunks can be processed in parallel

- Sending over the network
- Compression
- Encryption
- Anything expensive

- Tools mentioned earlier have similar mechanics

38

© 2021 Percona

Reading the stream in chunks

39

stream stream

1

2

3

4

5

6

4

2

3

6

1

5

© 2021 Percona

Reading the stream in chunks

- No out of the box solution for it
- A stream can be read in chunks locally
- The chunks can be processed in parallel

- Sending over the network
- Compression
- Encryption
- Anything expensive

40

© 2021 Percona

Simple python example

41

Thank you!

Q&A

