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About me

- Principal Architect at Percona
- Focused on automation and performance tuning
- Among others, worked at Dropbox, Zuora, Sun microsystems
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Long distance copies




What? Why?

Long distance means more latency
- Not necessarily less bandwidth

- Disaster recovery purposes
- Data in distant environment: we need initial copy
- This may be repeated through the lifecycle of the DR environment

- Moving data to the cloud or between cloud providers
- Disaster recovery testing (practice exercises)
- Read replicas in remote regions
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First: measure




Measurement setup

- Actual databases or data are not needed to validate the methods
- Used AWS
- This discussed here are general
- Various instance types in the same region (us-west-2)
- Various instance types between 2 distant regions (eu-central-1)
- The problem itself is not database related
- Tested with t2.micro instances
- Results are reproducible in the free tier
- Larger instances will have more consistent speeds
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Some theory: TCP window scaling

Dat

Ack X

AV

:

By default, TCP is not great over high

latency links
Sliding window mechanics of TCP are here
to help

Sending the next packet doesn’t need to
wait for the acknowledgment

Selective acknowledgement (sack) helps
to acknowledge multiple packets with a
single answer

Adjusted dynamically
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Ubuntu 20.04 defaults

net.core

net.core

net.ipv4.

net.core.
net.core.
net.ipv4.

net.ipv4.

net.ipv4.

.wmem_default = 212992

.wmem_max = 212992

tcp_wmem = 4096 16384 4194304
rmem_default = 212992

rmem_max = 212992

tcp_rmem = 4096 131072 6291456

udp_rmem_min = 4096

tcp_window_scaling = 1
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Default iperf same region

# iperf3 -s -p 9001

# iperf3 -c 1.2.3.4 -p 9601

[ 5] 0.00-10.00 sec 1.03 GBytes 883 Mbits/sec 4698
sender

10 © 2021 Percona



11

Same region, but limiting the window size

# iperf3 -s -p 9001

# iperf3 -c¢c 1.2.3.4 -p 9001 -w 1400

[ 5] 0.00-10.00 sec 18.2 MBytes 15.3 Mbits/sec
receiver
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Promising!
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001

# iperf3 -c 1.2.3.4 -p 9601

[ 5] 0.00-10.14 sec 77.7 MBytes 64.3 Mbits/sec
receiver
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Some tuning for high latency

net.core.wmem_max = 33554432
net.core.rmem_max = 33554432
net.ipv4.tcp_rmem = 10240 87380 33554432
net.ipv4.tcp_wmem = 10240 87380 33554432
net.core.netdev_max_backlog = 5000
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001

# iperf3 -c 1.2.3.4 -p 9001 -w 8388608

[ 5] 0.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec
receiver
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Not great results

- Slight but consistent difference
- Requesting a larger windows at the iperf level doesn’t make much
difference
- We already had
- net.ipvd.tcp_sack=1
- net.ipv4d.tcp_window_scaling =1
- Tunables are available on a per connection basis
- Several applications support it (for example bbcp)
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Parallelism
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Single vs multiple streams

SIrc

dst

SIrc

dst
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 4

# iperf3 -c 1.2.3.4 -p 9601

[ 5] ©.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec

receiver
[SUM] 0.00-10.14 sec 254 MBytes 210 Mbits/sec

receiver
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 6

# iperf3 -c 1.2.3.4 -p 9601

[ 5] ©.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec

receiver
[SUM] 0.00-10.14 sec 383 MBytes 317 Mbits/sec

receiver
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 16

# iperf3 -c 1.2.3.4 -p 9601

[ 5] ©.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec

receiver
[SUM] 0.00-10.14 sec 578 MBytes 478 Mbits/sec

receiver
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Parallel TCP streams

- Different source port for each stream

- Not necessarily different destination port for each stream
- Depends on the implementation
-  With one destination port, the listener needs to handle 10 multiplexing
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Parallel streams is the way
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Can be useful even locally

- Modern, high performance network controllers
- Can’t be saturated with a single stream
- Have multiple interrupt channels for both TX and RX
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Copying an existing backup
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Copying existing backup

- Have a set of files to copy
- Want to copy them using multiple TCP streams
- Normal methods could be scp, tar | nc, all single streamed
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bbcp

- Does exactly this

Using SSH for control channel

- Seems like SCP, but it’s not

Control traffic is encrypted, data is not!
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bbcp setup (Ubuntu 20.04)

sudo apt-get install libssl-dev build-essential zlibl1g-dev git
git clone https://www.slac.stanford.edu/~abh/bbcp/bbcp.git/

cd bbcp/src

make

sudo cp ../bin/amd64_1linux/bbcp /bin/bbcp

bbcp --version

© 2021 Percona D



bbcp example

bbcp \
-P 16\
-Z 9001:9016 -r testdir ubuntu@dest_machine:/home/ubuntu/

Caveats!

- Doesn’t handle ~ (it’s like scp but it’s not)

- The bbcp binary must be in the path of the receiving machine

- Bi-directional communication is needed (receiver connects back to sender)
- Data is not encrypted
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Parallel xtrabackup
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Parallel xtrabackup

- Xbstream will emit a single stream that can be copied
- nc, socat and the likes are using a single stream

- will be inefficient on high latency links
- network copy if often the bottleneck
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Out of the box: xbcloud and

object storage
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xbcloud

- Xbstream will emit a single stream that can be copied
- nc, socat and the likes are using a single stream
- will be inefficient on high latency links
- network copy if often the bottleneck
- Xbcloud to the rescue
- copy first to the object storage, copy within the object storage to
another region
- both can be parallel
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xbcloud example

S xtrabackup --backup --stream=xbstream --parallel=10
--extra-1sndir=/tmp --target-dir=/tmp | \

xbcloud put --storage=s3 \
--s3-endpoint="'s3.amazonaws.com’ \
--s3-access-key="'YOUR-ACCESSKEYID" \
--s3-secret-key="YOUR-SECRETACCESSKEY" \
--s3-bucket="mysqgl_backups’
--parallel=10 \

S(date -I)-full_backup
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s3 region copy example

S aws s3 cp s3://src-bucket-region-1/ \
s3://target-bucket-region-2/ \
--recursive \

--source-region region-1 \
--region region-2 \
--max-concurrent-requests=50
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Summary

- Use xbcloud to copy to object storage
- Copy the data to another region of the object storage
- Or specify the remote region for xbcloud
- Restore locally from the target object storage
- The example was for AWS and S3, but xbcloud works for other object
storage too
- You will get the high throughput as you would get with bbcp
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Reading a stream in chunks
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Reading the stream in chunks

- How does it work part
- A stream can be read in chunks locally
- The chunks can be processed in parallel
- Sending over the network
- Compression
- Encryption
- Anything expensive
Tools mentioned earlier have similar mechanics
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Reading the stream in chunks

stream
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Reading the stream in chunks

- No out of the box solution for it
- A stream can be read in chunks locally
- The chunks can be processed in parallel
- Sending over the network
- Compression
- Encryption
- Anything expensive
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Simple python example

In [1]: import subprocess
In [2]: class DataChunk(object):
def __init__(self, data, segno):

self.data = data
self.segno = segno

def __repr__(self):
return "DataChunk({segno})".format(segno=self.seqgno)
: chunks = []

: Xb_proc = subprocess.Popen(["xtrabackup", "--backup", "--stream=xbstream"],
: stdout=subprocess.PIPE, stderr=subprocess.PIPE)

: chunks.append(DataChunk(xb_proc.stdout.read(64*1024*1024), 1))

: chunks.append(DataChunk(xb_proc.stdout.read(64*1024*1024), 2))

: chunks
[DataChunk(1), DataChunk(2)]

: len(chunks[@].data)
: 67108864

© 2021 Percona



Thank you!
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