Going the distance

Copying data over high latency network links

Peter Boros
Principal Architect @ Percona

Q PERCONA



About me

- Principal Architect at Percona
- Focused on automation and performance tuning
- Among others, worked at Dropbox, Zuora, Sun microsystems

© 2021 Percona



Agenda

- Long distance copy: What is the difference?
- Measurement setup

- Some TCP/IP

- Benchmarking

- Parallel TCP streams

- Copying an existing backup

- Streaming backups

© 2021 Percona



Long distance copies




What? Why?

Long distance means more latency
- Not necessarily less bandwidth

- Disaster recovery purposes
- Data in distant environment: we need initial copy
- This may be repeated through the lifecycle of the DR environment

- Moving data to the cloud or between cloud providers
- Disaster recovery testing (practice exercises)
- Read replicas in remote regions

© 2021 Percona



First: measure




Measurement setup

- Actual databases or data are not needed to validate the methods
- Used AWS
- This discussed here are general
- Various instance types in the same region (us-west-2)
- Various instance types between 2 distant regions (eu-central-1)
- The problem itself is not database related
- Tested with t2.micro instances
- Results are reproducible in the free tier
- Larger instances will have more consistent speeds

© 2021 Percona



Some theory: TCP window scaling

Dat

Ack X

AV

:

By default, TCP is not great over high

latency links
Sliding window mechanics of TCP are here
to help

Sending the next packet doesn’t need to
wait for the acknowledgment

Selective acknowledgement (sack) helps
to acknowledge multiple packets with a
single answer

Adjusted dynamically

© 2021 Percona @ PER C 0 NA



Ubuntu 20.04 defaults

net.core

net.core

net.ipv4.

net.core.
net.core.
net.ipv4.

net.ipv4.

net.ipv4.

.wmem_default = 212992

.wmem_max = 212992

tcp_wmem = 4096 16384 4194304
rmem_default = 212992

rmem_max = 212992

tcp_rmem = 4096 131072 6291456

udp_rmem_min = 4096

tcp_window_scaling = 1

© 2021 Percona



Default iperf same region

# iperf3 -s -p 9001

# iperf3 -c 1.2.3.4 -p 9601

[ 5] 0.00-10.00 sec 1.03 GBytes 883 Mbits/sec 4698
sender

10 © 2021 Percona



11

Same region, but limiting the window size

# iperf3 -s -p 9001

# iperf3 -c¢c 1.2.3.4 -p 9001 -w 1400

[ 5] 0.00-10.00 sec 18.2 MBytes 15.3 Mbits/sec
receiver

© 2021 Percona



Promising!




13

Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001

# iperf3 -c 1.2.3.4 -p 9601

[ 5] 0.00-10.14 sec 77.7 MBytes 64.3 Mbits/sec
receiver

© 2021 Percona



Some tuning for high latency

net.core.wmem_max = 33554432
net.core.rmem_max = 33554432
net.ipv4.tcp_rmem = 10240 87380 33554432
net.ipv4.tcp_wmem = 10240 87380 33554432
net.core.netdev_max_backlog = 5000

14 © 2021 Percona



15

Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001

# iperf3 -c 1.2.3.4 -p 9001 -w 8388608

[ 5] 0.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec
receiver

© 2021 Percona



16

Not great results

- Slight but consistent difference
- Requesting a larger windows at the iperf level doesn’t make much
difference
- We already had
- net.ipvd.tcp_sack=1
- net.ipv4d.tcp_window_scaling =1
- Tunables are available on a per connection basis
- Several applications support it (for example bbcp)

© 2021 Percona



Parallelism




18

Single vs multiple streams

SIrc

dst

SIrc

dst

© 2021 Percona



19

Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 4

# iperf3 -c 1.2.3.4 -p 9601

[ 5] ©.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec

receiver
[SUM] 0.00-10.14 sec 254 MBytes 210 Mbits/sec

receiver

© 2021 Percona



20

Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 6

# iperf3 -c 1.2.3.4 -p 9601

[ 5] ©.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec

receiver
[SUM] 0.00-10.14 sec 383 MBytes 317 Mbits/sec

receiver

© 2021 Percona



21

Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 16

# iperf3 -c 1.2.3.4 -p 9601

[ 5] ©.00-10.14 sec 83.1 MBytes 68.8 Mbits/sec

receiver
[SUM] 0.00-10.14 sec 578 MBytes 478 Mbits/sec

receiver

© 2021 Percona



22

Parallel TCP streams

- Different source port for each stream

- Not necessarily different destination port for each stream
- Depends on the implementation
-  With one destination port, the listener needs to handle 10 multiplexing

© 2021 Percona



Parallel streams is the way

O8N PERCONA



24

Can be useful even locally

- Modern, high performance network controllers
- Can’t be saturated with a single stream
- Have multiple interrupt channels for both TX and RX

© 2021 Percona



Copying an existing backup

O8N PERCONA



26

Copying existing backup

- Have a set of files to copy
- Want to copy them using multiple TCP streams
- Normal methods could be scp, tar | nc, all single streamed

© 2021 Percona



27

bbcp

- Does exactly this

Using SSH for control channel

- Seems like SCP, but it’s not

Control traffic is encrypted, data is not!

© 2021 Percona



28

bbcp setup (Ubuntu 20.04)

sudo apt-get install libssl-dev build-essential zlibl1g-dev git
git clone https://www.slac.stanford.edu/~abh/bbcp/bbcp.git/

cd bbcp/src

make

sudo cp ../bin/amd64_1linux/bbcp /bin/bbcp

bbcp --version

© 2021 Percona D



bbcp example

bbcp \
-P 16\
-Z 9001:9016 -r testdir ubuntu@dest_machine:/home/ubuntu/

Caveats!

- Doesn’t handle ~ (it’s like scp but it’s not)

- The bbcp binary must be in the path of the receiving machine

- Bi-directional communication is needed (receiver connects back to sender)
- Data is not encrypted

29 © 2021 Percona @ PERCONA



Parallel xtrabackup

O8N PERCONA



31

Parallel xtrabackup

- Xbstream will emit a single stream that can be copied
- nc, socat and the likes are using a single stream

- will be inefficient on high latency links
- network copy if often the bottleneck

© 2021 Percona



Out of the box: xbcloud and

object storage

O8N PERCONA



33

xbcloud

- Xbstream will emit a single stream that can be copied
- nc, socat and the likes are using a single stream
- will be inefficient on high latency links
- network copy if often the bottleneck
- Xbcloud to the rescue
- copy first to the object storage, copy within the object storage to
another region
- both can be parallel

© 2021 Percona



34

xbcloud example

S xtrabackup --backup --stream=xbstream --parallel=10
--extra-1sndir=/tmp --target-dir=/tmp | \

xbcloud put --storage=s3 \
--s3-endpoint="'s3.amazonaws.com’ \
--s3-access-key="'YOUR-ACCESSKEYID" \
--s3-secret-key="YOUR-SECRETACCESSKEY" \
--s3-bucket="mysqgl_backups’
--parallel=10 \

S(date -I)-full_backup

© 2021 Percona ©B PERCONA



35

s3 region copy example

S aws s3 cp s3://src-bucket-region-1/ \
s3://target-bucket-region-2/ \
--recursive \

--source-region region-1 \
--region region-2 \
--max-concurrent-requests=50

© 2021 Percona



36

Summary

- Use xbcloud to copy to object storage
- Copy the data to another region of the object storage
- Or specify the remote region for xbcloud
- Restore locally from the target object storage
- The example was for AWS and S3, but xbcloud works for other object
storage too
- You will get the high throughput as you would get with bbcp

© 2021 Percona



Reading a stream in chunks

O8N PERCONA



38

Reading the stream in chunks

- How does it work part
- A stream can be read in chunks locally
- The chunks can be processed in parallel
- Sending over the network
- Compression
- Encryption
- Anything expensive
Tools mentioned earlier have similar mechanics

© 2021 Percona



39

Reading the stream in chunks

stream

© 2021 Percona

stream




40

Reading the stream in chunks

- No out of the box solution for it
- A stream can be read in chunks locally
- The chunks can be processed in parallel
- Sending over the network
- Compression
- Encryption
- Anything expensive

© 2021 Percona



Simple python example

In [1]: import subprocess
In [2]: class DataChunk(object):
def __init__(self, data, segno):

self.data = data
self.segno = segno

def __repr__(self):
return "DataChunk({segno})".format(segno=self.seqgno)
: chunks = []

: Xb_proc = subprocess.Popen(["xtrabackup", "--backup", "--stream=xbstream"],
: stdout=subprocess.PIPE, stderr=subprocess.PIPE)

: chunks.append(DataChunk(xb_proc.stdout.read(64*1024*1024), 1))

: chunks.append(DataChunk(xb_proc.stdout.read(64*1024*1024), 2))

: chunks
[DataChunk(1), DataChunk(2)]

: len(chunks[@].data)
: 67108864

© 2021 Percona



Thank you!

O8N PERCONA



O8N PERCONA



