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About me

- Principal Architect at Percona 
- Focused on automation and performance tuning
- Among others, worked at Dropbox, Zuora, Sun microsystems
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Agenda

- Long distance copy: What is the difference?
- Measurement setup
- Some TCP/IP
- Benchmarking
- Parallel TCP streams
- Copying an existing backup
- Streaming backups
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Long distance copies
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What? Why?

- Long distance means more latency
- Not necessarily less bandwidth

- Disaster recovery purposes
- Data in distant environment: we need initial copy
- This may be repeated through the lifecycle of the DR environment

- Moving data to the cloud or between cloud providers
- Disaster recovery testing (practice exercises)
- Read replicas in remote regions
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First: measure
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Measurement setup

- Actual databases or data are not needed to validate the methods
- Used AWS 

- This discussed here are general
- Various instance types in the same region (us-west-2)
- Various instance types between 2 distant regions (eu-central-1)
- The problem itself is not database related
- Tested with t2.micro instances

- Results are reproducible in the free tier
- Larger instances will have more consistent speeds
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Some theory: TCP window scaling
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Data X

Ack X

- By default, TCP is not great over high 
latency links

- Sliding window mechanics of TCP are here 
to help

- Sending the next packet doesn’t need to 
wait for the acknowledgment

- Selective acknowledgement (sack) helps 
to acknowledge multiple packets with a 
single answer

- Adjusted dynamically
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Ubuntu 20.04 defaults

net.core.wmem_default = 212992

net.core.wmem_max = 212992

net.ipv4.tcp_wmem = 4096 16384 4194304

net.core.rmem_default = 212992

net.core.rmem_max = 212992

net.ipv4.tcp_rmem = 4096 131072 6291456

net.ipv4.udp_rmem_min = 4096

net.ipv4.tcp_window_scaling = 1
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Default iperf same region

# iperf3 -s -p 9001

-----------------------------------------------------------

Server listening on 9001

-----------------------------------------------------------
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# iperf3 -c 1.2.3.4 -p 9001
…
[  5]   0.00-10.00  sec  1.03 GBytes   883 Mbits/sec  4698             
sender
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Same region, but limiting the window size

# iperf3 -s -p 9001

-----------------------------------------------------------

Server listening on 9001

-----------------------------------------------------------
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# iperf3 -c 1.2.3.4 -p 9001 -w 1400
…
[  5]   0.00-10.00  sec  18.2 MBytes  15.3 Mbits/sec                  
receiver



Promising!
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001

-----------------------------------------------------------

Server listening on 9001

-----------------------------------------------------------
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# iperf3 -c 1.2.3.4 -p 9001
…
[  5]   0.00-10.14  sec  77.7 MBytes  64.3 Mbits/sec                  
receiver



© 2021 Percona

Some tuning for high latency

net.core.wmem_max = 33554432
net.core.rmem_max = 33554432
net.ipv4.tcp_rmem = 10240 87380 33554432
net.ipv4.tcp_wmem = 10240 87380 33554432
net.core.netdev_max_backlog = 5000
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001

-----------------------------------------------------------

Server listening on 9001

-----------------------------------------------------------
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# iperf3 -c 1.2.3.4 -p 9001 -w 8388608
…
[  5]   0.00-10.14  sec  83.1 MBytes  68.8 Mbits/sec                  
receiver
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Not great results

- Slight but consistent difference
- Requesting a larger windows at the iperf level doesn’t make much 

difference
- We already had

- net.ipv4.tcp_sack = 1
- net.ipv4.tcp_window_scaling = 1

- Tunables are available on a per connection basis
- Several applications support it (for example bbcp)
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Parallelism
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Single vs multiple streams
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src dst

src dst
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 4

-----------------------------------------------------------

Server listening on 9001

-----------------------------------------------------------
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# iperf3 -c 1.2.3.4 -p 9001
…
[  5]   0.00-10.14  sec  83.1 MBytes  68.8 Mbits/sec                  
receiver
[SUM]   0.00-10.14  sec   254 MBytes   210 Mbits/sec                  
receiver
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 6

-----------------------------------------------------------

Server listening on 9001

-----------------------------------------------------------
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# iperf3 -c 1.2.3.4 -p 9001
…
[  5]   0.00-10.14  sec  83.1 MBytes  68.8 Mbits/sec                  
receiver
[SUM]   0.00-10.14  sec   383 MBytes   317 Mbits/sec                  
receiver
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Different (us-west-2, eu-central-1)

# iperf3 -s -p 9001 -P 16

-----------------------------------------------------------

Server listening on 9001

-----------------------------------------------------------
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# iperf3 -c 1.2.3.4 -p 9001
…
[  5]   0.00-10.14  sec  83.1 MBytes  68.8 Mbits/sec                  
receiver
[SUM]   0.00-10.14  sec   578 MBytes   478 Mbits/sec                  
receiver



© 2021 Percona

Parallel TCP streams

- Different source port for each stream
- Not necessarily different destination port for each stream

- Depends on the implementation
- With one destination port, the listener needs to handle IO multiplexing
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Parallel streams is the way 
to go!
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Can be useful even locally

- Modern, high performance network controllers
- Can’t be saturated with a single stream
- Have multiple interrupt channels for both TX and RX
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Copying an existing backup
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Copying existing backup

- Have a set of files to copy
- Want to copy them using multiple TCP streams
- Normal methods could be scp, tar | nc, all single streamed
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bbcp

- Does exactly this
- Using SSH for control channel
- Seems like SCP, but it’s not
- Control traffic is encrypted, data is not!
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bbcp setup (Ubuntu 20.04)

sudo apt-get install libssl-dev build-essential zlib1g-dev git

git clone https://www.slac.stanford.edu/~abh/bbcp/bbcp.git/

cd bbcp/src

make

sudo cp ../bin/amd64_linux/bbcp /bin/bbcp

bbcp --version
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bbcp example

bbcp \

-P 16 \

-Z 9001:9016  -r testdir ubuntu@dest_machine:/home/ubuntu/

Caveats!

- Doesn’t handle ~ (it’s like scp but it’s not)
- The bbcp binary must be in the path of the receiving machine
- Bi-directional communication is needed (receiver connects back to sender)
- Data is not encrypted
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Parallel xtrabackup
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Parallel xtrabackup

- xbstream will emit a single stream that can be copied
- nc, socat and the likes are using a single stream

- will be inefficient on high latency links
- network copy if often the bottleneck
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Out of the box: xbcloud and 
object storage
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xbcloud

- xbstream will emit a single stream that can be copied
- nc, socat and the likes are using a single stream

- will be inefficient on high latency links
- network copy if often the bottleneck
- xbcloud to the rescue

- copy first to the object storage, copy within the object storage to 
another region

- both can be parallel
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xbcloud example

$ xtrabackup --backup --stream=xbstream --parallel=10 
--extra-lsndir=/tmp --target-dir=/tmp | \
xbcloud put --storage=s3 \
--s3-endpoint='s3.amazonaws.com' \
--s3-access-key='YOUR-ACCESSKEYID' \
--s3-secret-key='YOUR-SECRETACCESSKEY' \
--s3-bucket='mysql_backups'
--parallel=10 \
$(date -I)-full_backup
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s3 region copy example

$ aws s3 cp s3://src-bucket-region-1/ \
      s3://target-bucket-region-2/ \
      --recursive \
      --source-region region-1 \
      --region region-2 \
      --max-concurrent-requests=50
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Summary

- Use xbcloud to copy to object storage
- Copy the data to another region of the object storage

- Or specify the remote region for xbcloud
- Restore locally from the target object storage
- The example was for AWS and S3, but xbcloud works for other object 

storage too
- You will get the high throughput as you would get with bbcp
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Reading a stream in chunks
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Reading the stream in chunks 

- How does it work part
- A stream can be read in chunks locally
- The chunks can be processed in parallel

- Sending over the network
- Compression
- Encryption
- Anything expensive

- Tools mentioned earlier have similar mechanics
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Reading the stream in chunks 
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Reading the stream in chunks 

- No out of the box solution for it
- A stream can be read in chunks locally
- The chunks can be processed in parallel

- Sending over the network
- Compression
- Encryption
- Anything expensive
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Simple python example
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Thank you!
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