


A Better Way to Benchmark Your Open Source Database



Hello!

Steve Shaw
Open source database @ Intel

Main developer of HammerDB

3



Introduction



What is HammerDB? 

● Not a database!

● Leading open source tool for 

benchmarking relational 

databases

● Interfaces
○ Graphical

○ Command Line 

○ Web REST interfaces

● Industry standard benchmarks

● High performance and 

scalability

5



Open Source

● Hosted by TPC Council since 2019
○ Industry standard body for database 

benchmarks

● TPC-OSS subcommittee
○ Oversees and approves changes

● v4.1 Released on 22nd April 21
● Source code on GitHub
● Binaries @ GitHub Releases

○ https://www.hammerdb.com/download.html

● Client natively supports Linux and 
Windows on x64

○ GUI & CLI on both Linux and Windows

● GitHub Release Downloads @
○ https://www.hammerdb.com/stats.html

● Test databases on any platform

6

https://www.hammerdb.com/download.html
https://www.hammerdb.com/stats.html


Supported Databases

● HammerDB supports the most popular relational databases

● Commercial and open source

● Metrics enable comparison across database engines

7



8

• TPROC-C = OLTP

• Transactional workloads. Row oriented, 

high read and write throughput. 

• Derived from TPC-C

• TPROC-H = OLAP

• Analytic, Decision Support

• Focus on ETL 

• high bandwidth reads & minimal writes.

• Derived from TPC-H 

• Using TPCC/TPC-C, TPCH/TPC-H for derived 

workloads not permitted (trademark violation)

Supported Workloads



Key Database Benchmarking Concepts

● Parallel benchmarking software
○ Concurrency control must be  in 

database, not in client

● Complex workloads designed to 

scale and test RDBMS concepts
○ Locking and latching

● Cross reference workloads across 

multiple database engines 
○ Validate concepts

● HammerDB up to 6-7M NOPM on 

commercial database engines on 

2 socket servers
○ High confidence levels that 

bottlenecks are in database software 

not HammerDB
9



HammerDB Programming Languages

● Designed for High Performance and Scalability

● Database commands in SQL

● Application logic in stored procedures

● Database Interfaces in C

● More time in the database, less time in the 

‘round trip’

● More system resources for the database, less 

resources for the benchmark client
○ 3% for HammerDB

○ 20% in sysbench in socket/network layer

10



Tcl as Glue Language

● Python GIL limits to single-threading

● Tcl as glue language for truly parallel 

multithreading

● Tcl compiles into bytecode at runtime 

for high performance

● Co-routines used for event-driven 

scaling only to prevent bottleneck

● GUI & CLI on same codebase

● Native Tk GUI including 4k UHD 

scaling

11

Tcl Multithreading

Python Multithreading with GIL



Cached vs Scaled Benchmarks

● Default Mode Cached workload
○ Testing goals

● Cached
○ Less than 5000 warehouses
○ All data in memory
○ 10s to hundreds of sessions
○ CPU & Memory Intensive
○ WAL & Redo Disk Write Intensive
○ Maximum performance at minimal 

configuration

● Scaled (Event driven scaling)
○ More  than 5000 warehouses
○ Event driven scaling
○ Thousands of sessions
○ Middleware needed
○ Larger disk and networking requirement
○ Data Disk Read and Write Intensive

● Perfectly Scaled Configuration = 
Cached performance 

12



System Configuration



sudo vi /etc/default/cpufrequtils

GOVERNOR="performance“

systemctl restart cpufrequtils

systemctl disable ondemand

sudo ./cpupower frequency-info

analyzing CPU 0:

driver: intel_pstate

…

available cpufreq governors: performance powersave

current policy: frequency should be within 800 MHz and 

3.40 GHz.

The governor "performance" may decide which 

speed to use

within this range.

current CPU frequency: Unable to call hardware

current CPU frequency: 1.03 GHz (asserted by call to kernel)

boost state support:

Supported: yes

Active: yes

● Some Linux releases default to CPU 

powersave mode
○ 33% lower performance

CPU

33%



Memory

● For default cached workload

● Size Buffer Pool / Cache large enough 

to cache the TPROC-C schema

● Use 1GB Huge Pages for PostgreSQL

● MySQL/MariaDB InnoDB
○ innodb_buffer_pool_size=64000M

● PostgreSQL
○ shared_buffers = 64000MB

○ huge_pages = on 



I/O WAL and Redo Performance

● Use Highest Performance SSDs for WAL/Redo
○ Intel Optane
○ Low latency writes

● Ensure partitions correctly aligned
● Use 1GB redo log / WAL segment size
● MySQL

○ innodb_log_file_size=1024M
○ innodb_log_files_in_group=32

● PostgreSQL
○ initdb -D ./data --wal-segsize=1024

● Synchronous Commit
○ What components are you testing?

● MySQL
○ innodb_flush_log_at_trx_commit=0/1

● PostgreSQL
○ wal_level = minimal/replica       
○ synchronous_commit = off/on 



Loading Database Client Libraries

● HammerDB needs access to client libraries to load interface

● CLI librarycheck command

● Export LIBRARY_PATH

● Use ldd on HammerDB interfaces to verify library used 
○ Up to v4.1 for MariaDB you need the MySQL client, from v4.2 MariaDB clients used

export LD_LIBRARY_PATH=/opt/postgresql-13.2/pgsql/lib/:$LD_LIBRARY_PATH

hammerdb>librarycheck

Checking database library for MySQL

Success ... loaded library mysqltcl for MySQL

Checking database library for PostgreSQL

Success ... loaded library Pgtcl for PostgreSQL

ldd libmysqltcl3.052.so 

libmysqlclient.so.21 => /usr/lib/x86_64-linux-gnu/libmysqlclient.so.21

libpgtcl2.1.1.so 

libpq.so.5 => /opt/postgresql-13.2/pgsql/lib/libpq.so.5 (0x00007f0e20ce5000)



Schema Build



Schema Build

● Schema Build Options
○ Select options from menu

○ Configure with CLI commands

○ Same schema is built

● Options vary per database
○ MySQL Storage Engines

○ Partitioning

○ PostgreSQL stored procedures or 

functions

● Key Factors in Build Performance
○ CPU cores in client

○ I/O throughput on database



Schema Build Choices
● Schema Build

○ Creates tables

○ Creates and loads data

○ Creates Indexes

○ Creates functions/stored procedures

○ Gathers statistics

● Number of Warehouses
○ Define according to system scale

○ Entire schema scaled based on warehouse count

● Stored Procedures
○ New Order

○ Payment

○ Delivery

○ Stock Level 

○ Order Status

● Virtual Users to Build Schema
○ Schema creates and loads data in parallel

○ Use number of CPU cores/threads on HammerDB

client



How many warehouses?

● Default Configuration

● Virtual Users chooses a home warehouse at random

● 90% of the workload satisfied from  the home 

warehouse
○ Regardless of the number configured

○ Hot and cold data

● Configure enough warehouses to ensure an even 

spread of Virtual Users (eg 4X expected VU count)

● Overprovisioning warehouses will not increase 

performance or scalability

● Example on 2 socket 1000 warehouses
○ Takes 8-9 minutes to load

○ Depends on CPU and Disk and Virtual Users to build schema

● Warehouse Count Limits
○ 5000 warehouses in GUI

○ 30,000 in Datagen

○ No actual limit for advanced users, only interface limits

Warehouse 6

Warehouse 7

Warehouse 8

Warehouse 9

Warehouse 10

Warehouse 1

Warehouse 2

Warehouse 3

Warehouse 4

Warehouse 5

Warehouse 1000

Warehouse 10,000

…

…



Running the Build

GUI

CLI Script

Run script

● Build Schema Command
○ GUI Build Option

○ CLI buildschema command



Datagen

● GUI or CLI
○ Bulk Loads to bypass database logging and network overhead

Schema Data in text files



Running the Test



Running the Test

● Driver Script Options
○ Test Loads a driver script

○ Options modify script loaded

● Test Script
○ Simple run

○ Small number of Virtual 

Users

○ Verify Schema Build

● Timed Script
○ Measured Test

○ Small to larger number of 

Virtual Users

○ Suppressed Output

25



Driver Script Options

● Connection Parameters

● Driver Script

● Total Transactions
○ Sets an upper limit for number of 

transactions for each Virtual User to run

● Rampup Time
○ Time for data to load into cache

● Test Duration
○ Timed period of test

● Advanced Options

26



Virtual Users

● Configure and Create Virtual Users
○ Virtual Users run in parallel

○ Each Virtual User is OS thread

○ Runs independently

27



Running the Test

● Click Run to start

● Transaction Mix
○ New Order 45%

○ Payment 43%

○ Delivery 4%

○ Stock Level 4%

○ Order Status 4%

● Status shown of Virtual 

Users
○ Running

○ Complete

○ Error Status

● Press Stop to terminate 

Virtual Users

28



Running a Test with the CLI

● Choose Options

● Load Script

● Workload is identical to that run by GUI (driver script is the same)

29



Review Results

● Test Result Printed when 

compete
○ GUI

○ CLI

● Review Engine Throughput 

with Transaction Counter

30



Understanding Results: NOPM vs TPM

● NOPM
○ How fast you are going

○ Close relation to official tpmC

● TPM
○ How hard your engine is working

● Comparing performance
○ NOPM can be compared between 

engines

○ TPM can only be compared across 

the same engine

○ TPM useful engineering metric to 

compare statistics
31

NOPMTPM



GUI Automation: Autopilot

● GUI Automation

● Run Unattended Test Sequence

● Define sequence of tests
○ Increased Virtual User Count

● Log Output

32



CLI Automation: Scripting

● CLI supports full TCL syntax

● Simple foreach loop for test 

sequence

● Can modify any parameters 

desired

● Log output 

33



Performance Profiles

34

● Run Multiple Tests
○ Increasing  Virtual User Load 

● Example 56 (2 x 28) cores

● (Near) Linear Scale
○ Up to CPU cores/threads

○ Dependence on Database 

software

● Performance Plateau
○ Capture Peak Performance

○ Highest CPU Utilisation

● Contention
○ Increasing response times

○ Flat to lower performance



Comparing Performance

35

● Different Systems have 

different profiles
○ Not predictable on CPU Count

○ Database engines differ 

● MySQL example
○ Linear scale is the same

○ Sys 1 + 3 extended 

performance plateau

○ Sys 2 + 4 show contention 

earlier 

● Plan for differing levels of 

capacity  



Advanced Testing Features



Advanced Testing Features 

● Use All Warehouses
○ Increase physical I/O to the data area

● Connect Pooling
○ Direct parts of the workload to different nodes in the same cluster

○ For example read/write and read-only nodes

● Event Driven Scaling
○ Co-routine based

○ Implements keying and thinking time 

○ Scales to thousands of sessions

● Time Profiling
○ Capture Virtual User response times

● Step Workloads
○ Variable throughput by adding and removing Virtual Users

● Advanced Features not mutually exclusive
○ Can use some or all of the advanced features at the same time



Use All Warehouses

Warehouse 6

Warehouse 7

Warehouse 8

Warehouse 9

Warehouse 10

Warehouse 1

Warehouse 2

Warehouse 3

Warehouse 4

Warehouse 5

Warehouse 20

…

● All Warehouses divided between Virtual Users
○ New warehouse selected per transaction

○ More physical I/O



Connect Pooling for Clusters

● Define in XML Configuration
○ Multiple connections instances in cluster

○ Which transactions are directed to which 

nodes

○ Policy on how to allocate transactions across 

pool of connections eg round robin

● Example RW/RO nodes
○ Define RW transactions to primary and RO to 

standby

● Reports NOPM and TPM from Primary
○ Also reports client side TPM

○ Detailed view of transactions processed per 

node EndpointEndpoint

Cluster / Standby

Primary                 Secondary

Connection Type 2 eg “RO”  



Event Driven Scaling

● Default Workload is Cached

● Scaled Workloads
○ Large Session Counts

○ Fixed Throughput

○ Keying and Thinking Time delays

● Requires larger storage and networking
○ Requires middleware

○ HammerDB connects to middleware

○ Middleware connects to database

● Multiple Sessions per Virtual User
○ Uses co-routines to make key and think asynchronous

○ Appx 1 NOPM per session

● Example 1000 warehouses
○ 10,000 Sessions

○ 10,000 NOPM



Time Profiling for Response Times

● 2 Time Profiling Packages
○ Xtprof – all virtual users

○ Etprof – first active virtual user

● Xtprof
○ Profile of all virtual user response times

○ Summary of all virtual users



Variable Step Workloads

● Creates Variable Load 
○ Define in XML

○ Pyramid of HammerDB Instances

● Runs in CLI only
○ Primary Instance of HammerDB

○ Replica instances created 

automatically and connect to primary

○ Timed delay of replica starts

● Start with “steprun” command

● Measure response times
○ Variations in performance

Time

VUs 

NOPM

Primary Instance of HammerDB

Replica1 Instance of HammerDB

Replica2 Instance of HammerDB

Replica3

Instance of 

HammerDB

VUs 

VUs 

VUs VUs 

VUs 

VUs 

VUs 



Performance Monitoring



CPU & Database Metrics

● HammerDB Graphical CPU Monitor

● Visualization of CPU load

● eg 50% CPU Average
○ Could be 50% of all cores at 50%

○ Could be 50% of cores at 100% and 50% at 0

● Detect CPU imbalance

● System & User CPU Utliization

● Identify Interrupt bottlenecks on individual 

cores

● GUI Database Metrics for PostgreSQL in 

progress



MySQL

● MySQL 8.0.20+ recommended
○ Improved Lock Scheduling

● Monitor InnoDB storage engine

● Innotop



PostgreSQL

● PostgreSQL 13+ recommended 
○ Improved throughput

● pg_stat_statements / pg_sentinel

% | AAS | backend_type | wait_event_type | wait_event

----+-------+----------------+-----------------+----------------------

48 | 28.00 | client backend | CPU | CPU

12 | 6.82 | client backend | LWLock | XactSLRU

11 | 6.18 | client backend | LWLock | WALInsert

9 | 5.41 | client backend | IPC | ProcArrayGroupUpdate

6 | 3.71 | client backend | Client | ClientRead

6 | 3.65 | client backend | IPC | XactGroupUpdate

5 | 2.82 | client backend | Lock | extend

2 | 0.94 | client backend | LWLock | ProcArray

1 | 0.35 | client backend | IPC | CheckpointDone



HPE LinuxKI
MySQL - HammerDB

MysQL - Sysbench

● LinuxKI Toolset 

(Trace-based 

performance 

analysis tool)

● System level 

analysis 
○ Beyond database 

only statistics



Next Steps



Analytic Testing

● TPROC-H for Analytics

● Cloud Queries

● Stream of 22 Complex Queries

● PostreSQL Parallel Query

● Columnstores

● More complex skillset required



Published Benchmarks

● Has someone already done a 

performance study you can use? 
○ https://www.hammerdb.com/benchmarks.html

● Have you published your findings for 

other people to use? 

● Making database performance data open 

source benefits all

https://www.hammerdb.com/benchmarks.html


Up Next v4.2

● MariaDB as separate database
○ TPROC-C and TPROC-H

○ Current support requires MySQL client 

library

○ Future support MariaDB client

○ Opportunity to diversify workload



Contribute to HammerDB on GitHub

● Contribute to HammerDB

● All source code open source

● Documentation open source
○ Docbook format

○ Edit with any XML editor

● Issues

● Discussions

● Binary releases



53

Thanks!

Any questions?



54


