
How we processed 
12 Trillion Rows 

during Black Friday

tinybird.co - @javisantana



12,213,675,632,435



12T  6 hours
(modest laptop)



The problem



Tinybird
SaaS product to build real time data products with high 
amounts of data

Not the sales guy here, but this gives context to this talk 



4 weeks before Black Friday
Client [who does not want to who they are] in the retail space:

 “Hey, we have a project for you…”



The use case
Report sales in real time for different countries for different 
areas in the company.

Our job: expose an API to feed their dashboards



The use case
That’s easy

Kafka Redis API



The use case: but wait, here is the reality

This is not a pretty dashboard with big numbers to post screenshots on twitter



The use case: but wait, here is the reality

Data origin: [legacy] transactional database (aka no change events, no CDC

500 concurrent users during that night

Real time 

Multiple filters and configurable options, not just global counters



The use case: the data stream 
Events with sales: product, units, amount… 12 columns

5 different data sources

5 batches per second with the last 5 minutes of data: lot of duplicated rows



The use case: the problems

Lot of read concurrency

Millions of rows per minute input

Deduplicate those rows



Ok, what’s the plan?



The approach: ideally

Serve static JSON files generated from the input. 

Cheap, scalable and simple

Way too many different combinations (filters + configuration)

API JSON files nginx



The approach: the decision, some background

We are boring, we tend to use technology with 15 years. Also we did this in the 

past in previous companies

No actual time to make complex decisions and our product solves this problem

We use Clickhouse in our product since 2018 and looks a good fit



JSON filesMaterialized views



The approach: the decision

Clickhouse has a nice feature: [Incremental] Materialized views

Query raw data JSON filesMaterialized views

slower // flexible faster // fixed



The solution
Infrastructure to handle 200300QPS

Nginx Varnish API
API

API
Clickhouse

Varnish

Just https Load balancing

Grace mode

Python

Data import
API Endpoints

Load balancing

Health checks

Database 
engine

(+ zookeeper)



The solution: first problem, dealing with import batches

Kafka ?

Data is sent in batches

Append only “landing” table leveraging Clickhouse super fast data import (also 

multimaster)

Generate all the views based on that “landing” table

 



The solution: dealing with import data

Upserts - clickhouse is not the best one here

30 minutes window to upsert

Solution: real time + historic tables

2 MV (for RT and historic) to cover 90% the API endpoints

Simple, fast to generate MV

 



The solution: some small but import details

Deal with replication lag

Materialized views must fit in memory

Leverage caching and indexing as much as possible

 



The solution: endpoints, aka queries to Clickhouse

Objective: 1 core - 150ms (q95)

Materialize data taking into account the (estimated) call distribution

Data driven optimization: a simple spreadsheet

 





Black Friday day[s]

650B rows ingested 

12T rows queried

50QPS median, 300QPS peak

600ms q95 response time by the end of the BF 

 



Thank you!
https://blog.tinybird.co/2020/12/21/how-we-setup-real-time-analytics-service-to-process-12-trillion-rows-during-black-friday/

https://tinybird.co 
 

@javisantana

https://blog.tinybird.co/2020/12/21/how-we-setup-real-time-analytics-service-to-process-12-trillion-rows-during-black-friday/

