
 How to cope with (unexpected)
millupling of your workload?

May 2021

Art van Scheppingen - Senior Database Engineer
MessageBird - Amsterdam

art.vanscheppingen@messagebird.com

DISCLAIMER
Opinions shared are my own and do not
necessarily reflect those of MessageBird

● MessageBird & me
● Context
● Read offloading
● Parallel replication
● Other restrictions
● Conclusion

Agenda

MessageBird & me
Who am I and what is MessageBird?

MessageBird powers communication between businesses and their
customers — across any channel, always with the right context,
and on every corner of the planet. Our products and solutions are
the foundational building blocks to business communications
across preferred channels, like SMS, Voice, WhatsApp, WeChat,
Messenger, Email and more.

For additional information visit:
www.messagebird.com

25,000 customers
We work globally with companies of every size,
from start-up to enterprise, across a wide variety of
industries.

175 countries of operation
We have teams in every region and timezone, so
we can offer 24/7 support to our customers.

700+ employees
Representing 55+ nationalities and based
worldwide — we’re a “Work Anywhere” company.

MessageBird

http://www.messagebird.com

We’re hiring!
https://messagebird.com/careers

Context
What is the situation?

Milluplicate
Mille = 1000, Milluplicate = 1000 times

What do we observe?
Traffic spike that greatly exceeds our normal traffic

MessageBird Platform Carriers

+ 220 more

Rich Messaging
Rich Content

Video

Images

Location

Payments

SMS

Voice

Numbers

Video

R
ou

tin
g,

 H
an

ds
et

 L
oo

ku
p,

 C
on

te
nt

 T
ra

ns
la

tio
n

Integrations

Dashboard

APIs

Customers

+ 20,000 more

Very high level overview

Batch API
ShoppingHub

Get 50% discount on Black
Friday!

Bulk
Meant to send out messages in bulk and has low priority over other
messages

1-to-n
Meant for reaching many recipients with a single message

Get 50% discount on Black
Friday!

Batch API
ShoppingHub

Get 50% discount on Black
Friday!

Bulk
Meant to send out messages in bulk and has low priority over other
messages

1-to-n
Meant for reaching many recipients with a single message

1-to-1
But you can also send a single message to a single person

Get 50% discount on Black
Friday!

Only this weekend: shipping is
free with your personal code
ABC123!

● Every API call inserts into the database directly
○ Thousands of parallel threads
○ Increasing the number of CPUs won’t help

■ Counter intuitive: decrease
● 1-to-n

○ A few API calls will cause many messages to be sent
● 1-to-1

○ Many API calls will cause many messages to be sent
● Solution:

○ Start queuing messages!
○ Handle less important messages async

What were the issues with a sudden influx of bulk?

Adding a queue in front of the data store

● Queuing
○ We don’t persist messages immediately
○ PubSub is extremely reliable
○ Multi-region to ensure availability

● Concurrency
○ Queries overloading the primary
○ Hardly any read-offloading to replicas

● Solution:
○ Start offloading reads to replicas

■ Message status requests
■ Customer status overviews

What were the issues after queueing?

Read-offloading
What else are those replicas for?

A typical database at Messagebird

What we observed on replicas

● Replication lag
○ Replicas get overloaded with read-requests

■ Message status isn’t there yet
■ Customers and automated systems will repeatedly retry

● Throttling
○ We can only handle X-amount of messages per second
○ More than X-number of msg we will get replication lag

● Solution:
○ Parallel replication

What were the issues after read-offloading?

Parallel replication
Why would we need parallel replication?

● Mixed mode replication
● Parallel replication requires a restart

○ Had to wait for failover/switchover to be in place
● No reads were offloaded to the replicas

Why we didn’t enable parallel replication from the start

● Mixed mode replication
● Group commit

○ How much delay are you able to add?
○ Offload queries to replicas

■ Replication lag issues
○ Don’t add delay to a replica without parallel replication enabled!

Eliminate replication lag

● Don’t add delay to a replica without parallel replication enabled!

Eliminate replication lag

● Don’t add delay to a replica without parallel replication enabled!

Eliminate replication lag

● Parallel replication
○ How many threads do we need during millupling?
○ How effective are threads during off hours?
○ How much delay do we need to add?

● Tuning session(s)
○ Add (non-sending) workload
○ 8 threads works fine during high workloads

Eliminate replication lag

Other restrictions
What else did we encounter?

What other behaviour did we observe during the influx

● Strange query behaviour
○ Schema designed around 1-n relations
○ Many indexes
○ UUIDs pushing indexes out of memory

What other issues were observed?

CREATE TABLE message (
id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT,
...
message_id VARCHAR(36) NOT NULL,
...
created_at DATETIME NOT NULL,
PRIMARY_KEY(id, created_at),
UNIQUE message_id_idx (message_id),
KEY customer_created_idx (customer, created_at),
...
)
PARTITION BY RANGE (MONTH(created_at)) (
 PARTITION p1 VALUES LESS THAN (2),
 PARTITION p2 VALUES LESS THAN (3),
 PARTITION p3 VALUES LESS THAN (4),
...
);

UUIDs pushing indexes out of memory - Example

● What do we see?
○ Schema with id and created_at as PK (auto increment)
○ Unique UUID (message_id)
○ Datetime used for sorting range queries on various columns

● INSERTS
○ New rows will be inserted sequentially
○ Every row has a unique UUID, which is “random”
○ Random inserts means more parts of the message_id_idx index need to be loaded
○ Less memory available to satisfy range queries (sorting on datetime)

● SELECTS
○ Read-offloading of message status requires lookup by message_id
○ Also pushes indexes out of memory

● Solution:
○ Increase memory

UUIDs pushing indexes out of memory

Conclusion
What did we do in the end?

● Scale down
○ Slow down concurrency

■ Queueing
● Offload queries to replicas

○ Address replication lag issues: enable parallel replication
● Enable parallel replication

○ Change binary logging mode
○ Tune for intensive workload

● Scale up
○ Increase memory to keep (more) indexes in memory

What did we do?

The result [1 of 2] (primary)

The result [2 of 2] (replica)

● Scaling
○ Improve slowest components (scale up)
○ Offload more queries to replicas
○ Increase number of replicas

● Schema restrictions
○ Design new schema that is able to cope with 1-to-1 relations
○ Diversify indexes

■ Difficult with failover/switchover candidates
● Move data out of cluster (6 months currently)

○ Archive database
○ Requires application overhaul

● Sharding
○ Spread writes over many hosts
○ Requires schema and application overhaul

What can we still improve?

The dilemma
Do we wish/need to optimize more for high traffic?

(represents 5% of the time)

Thank you for attending!

Questions?

