
How we built a Geo-Distributed
Database with low latency

About Me

Ming Zhang (张明)
Research and Develop Engineer,
PingCAP

Committer of TiDB SQL-Infra SIG

Github: @djshow832

Agenda

● The geographic problem in databases

● What is TiDB?

● How does Geo-Distribution work in TiDB?

● Q&A

The geographic
problem in databases

Multiple Geographic Regions

Database

Client

region2

Database

Client

region1

Why multiple geographic regions?
● Improve access locality to achieve lower latency
● Tolerate the failure of an available zone (AZ) or an entire region

Multiple Geographic Regions

Tradeoff
● Latency
● Consistency level

MySQL Replication
● Asynchronous replication: low latency & lower consistency level
● Semisynchronous replication: high latency & higher consistency level
● Group replication: not optimized for multiple geographic regions

What is TiDB

What is TiDB
Open-source distributed NewSQL database for hybrid transactional and

analytical processing (HTAP) which speaks MySQL protocol

Horizontal Scalability

Transparent scale-out without

architectural complexity

High Availability

Auto-failover and self-healing to

ensure business continuity

Strongly Consistent

Full ACID transactions at scale in

distributed environments

MySQL Compatibility

Without changing MySQL application

code in most cases

Stateless SQL Layer

TiDB OLTP Architecture

Region 1

Region 3

TiKV node 1

Region 4

Store 1

Region 1

Region 2

TiKV node 2

Region 3

Store 2

Region 3

Range 1

TiKV node 3

Store 3

Region 4

Region 4

Region 2 Region 1

Region 2

TiKV node 4

Store 4

PD node 1 PD node 2

PD node 3

TiDB node 1 TiDB node 2 TiDB node 3

Raft Group

Metadata / Timestamp request

Balance / Failover

Distributed Key-Value Storage Engine

Placement Driver(PD)

Data organization

TiKV Node

Store 1

Region 1

Region 2

Region 3

Region 4

Local RocksDB instance

t1_r1 v1

t1_r2 v2

... ...

t5_r1 ...

t5_r10 ...

t1_i1_1_1 ...

t1_i1_2_2 ...

... ...

t1_i6_1_3 ...

... ...

Region 1

Region 2

Region 3

Region 4...

What is a region?
● A table is split into regions
● Each region is a bunch of continuous KV pairs
● Region meta: [start key, end key)

Raft group
● All replicas of a region form a raft group

Raft roles
● Leader (only one)
● Follower
● Learner (optional)

Write
● Data is written to the leader as logs
● The leader replicates logs to followers and learners
● Logs replicated to the majority of voters are committed

Read
● Read from the leader

Write and Read

Region 1

Region 3

Region 4

Store 1

Region 3

Range 1

Store 2

Region 4

Region 4

Region 2 Region 1

Region 2

Store 3

Transaction Model

Two-phase commit (2PC)
1. TiDB requests a start timestamp as the identifier

of the transaction: start_ts
2. TiDB prewrites data to TiKV
3. TiDB requests a commit timestamp for the

transaction before commit: commit_ts
4. TiDB commits data on TiKV with commit_ts

MVCC
● commit_ts is attached to each version of data
● Snapshot isolation TiKV node 1

PD leaderTiDB node

leader

1. Request start_ts

2. Prewrite

follower

3. Request commit_ts

4. Commit

How does Geo-Distribution
work in TiDB

Geographic Problems in TiDB

follower

TiKV node 1

PD leader

PD follower
PD followerTiDB node 1 TiDB node 2

...

leader

TiKV node 2

...

follower

TiKV node 3

...

TiKV node 4

...

Client

1 6

2

5

3

4

3

Write request
AZ1 AZ2

Geographic Problems in TiDB

follower

TiKV node 1

PD leader

PD follower
PD followerTiDB node 1 TiDB node 2

...

leader

TiKV node 2

...

follower

TiKV node 3

...

TiKV node 4

...

Client

1 4

2

3

Read request
AZ1 AZ2

Geographic Problems in TiDB

Bidirectional replication
● Split the system into seperate TiDB clusters, which reside in different AZ
● Clusters replicate to each other by synchronization tools
● Suffer from maintaining multiple clusters

What do we want?
● Maintain only one TiDB cluster
● Write and read with low latency
● High availability

Placement Policy

What is placement policy
● Define the placement and replica count of raft roles through SQL

Scenarios
● Place data across regions to improve access locality
● Limit data within its national border to guarantee data sovereignty
● Place latest data to SSD and history data to HDD
● Place the leader of hot data to a high-performance TiKV instance
● Increase the replica count of more important data

Placement Policy

A use case
● A user management system
● Users are distributed over the world
● Users visit their own information through the system

Deployment
● Two data centers located in two AZ
● Applications connect to the nearest data center
● Users typically connect to the nearest application

Solution
● Store each user information in the nearest data center according to their location
● Applications request user information from the local data center

Configuration
● Group components by AZ
● Mark instances with the same `zone` label

Placement Policy

follower

TiKV node 1

PD leader

TiDB node 1

TiKV node 2

west

zone='west' zone='west'

zone='west'
zone='west'

PD follower

zone='west'

leader

Placement Policy

Statements

CREATE TABLE user (id BIGINT AUTO_INCREMENT,
name VARCHAR(100), country VARCHAR(100),
PRIMARY KEY(country, id))

PARTITION BY LIST COLUMNS(country) (
PARTITION east VALUES IN('china', 'japan', 'singapore'),
PARTITION west VALUES IN('usa', 'canada', 'england', 'france')

);

ALTER TABLE user ALTER PARTITION east
ALTER PLACEMENT POLICY ROLE=leader CONSTRAINTS='["+zone=east"]';

ALTER TABLE user ALTER PARTITION west
ALTER PLACEMENT POLICY ROLE=leader CONSTRAINTS='["+zone=west"]';

Placement Policy

follower

TiKV node 1

PD leader

PD follower
PD followerTiDB node 1 TiDB node 2

leader

TiKV node 2

follower

TiKV node 3 TiKV node 4

Client

west east

follower leader followerLeaders of
partition `west`

Leaders of
partition `east`

Placement Policy

How does it work
● User defines the placement policies by SQL
● TiDB generates placement rules and send them to PD
● PD schedules data according to the placement rules

Each rule mainly contains:
● Key range: the data range of a table or partition
● Raft role: the raft role to be placed
● Constraints: the labels which TiKV instances match

follower

TiKV node 1

PD leaderTiDB node

TiKV node 2

leader

Client

SQL Placement rules

Schedule commands

follower follower

Local Transaction

PD leader

PD follower
PD followerTiDB node 1 TiDB node 2

Client

Begin transaction

AZ1 AZ2

Request timestamp

Problems of requesting timestamps
● Request timestamps from the PD leader
● The request crosses different AZ
● Request 2 timestamps for each transaction: start_ts & commit_ts

Local Transaction

Timestamp allocators
● Elect a local timestamp allocator (PD leader or PD follower) for each AZ
● PD leader is the global timestamp allocator

PD leader

PD follower

AZ1

PD follower

AZ2

global timestamp allocator &
local timestamp allocator for AZ1 local timestamp allocator for AZ2

Local Transaction

What are local transactions?
● Local transactions request timestamps from the local timestamp alloator
● Avoid crossing AZ latency

PD leader

PD follower
PD followerTiDB node 1 TiDB node 2

Client

Begin transaction

AZ1 AZ2

Request timestamp

Client

Request timestamp

Begin transaction

Global Transaction

Limitations of local transactions
● Clock bias exists among local timestamp allocators, so accessing the same data violates

linearizability
● Local transactions can only visit local data
● Data placement is defined through placement policies

Why global transactions?
● When a transaction crosses different AZ
● When a transaction accesses global data, such as metadata

What are global transactions?
● Global timestamp is allocated from the global timestamp allocator
● Conform to linearizability: previous local timestamp < global timestamp < later local timestamp

Global Transaction

How do global transactions work?
1. The global timestamp allocator collects max timestamps allocated by all local timestamp allocators

(local_ts)
2. The global timestamp allocator calculates Tmax: Tmax = max (local_ts, ...) + 1

PD leader

PD follower

AZ1

PD follower

AZ2 PD leader

PD follower

AZ1

PD follower

AZ2

Returns the max timestamp
allocated by AZ2 (local_ts2) Tmax = max(local_ts1, local_ts2) + 1

Global Transaction

How do global transactions work?
 3. The global timestamp allocator broadcasts Tmax to all local timestamp allocators
 4. Local timestamp allocators update their local timestamp starting points local_ts

PD leader

PD follower

AZ1

PD follower

AZ2 PD leader

PD follower

AZ1

PD follower

AZ2

Sends Tmax to local timestamp
allocator for AZ2 local_ts2 = max(Tmax, local_ts2)

Global Transaction

How do global transactions work?
 5. The global timestamp allocator allocates timestamps from Tmax
 6. Local timestamp allocators allocate timestamps from local_ts2

PD leader

PD follower

AZ1

PD follower

AZ2

allocate from local_ts2allocate from Tmax

Local & Global Transaction

Local transaction limitations
● Data must be bound to one AZ
● A local transaction can only read / write the data from the current AZ

Global transaction limitations
● Able to access any data
● Cross region 3 times for allocating a global timestamp
● Typically only used for accessing data that not bound to any AZ, such as metadata

Local Stale Read

Why local stale read?
● When data is not bound to AZ, placement policies and local transactions are not appliable
● Followers can also be read
● Sometimes strong consistency is not a must

What is local stale read?
● Read the local replica, including followers
● Read stale data, thus do not guarantee linearizability
● Guarantee snapshot isolation

Local Stale Read

follower

TiKV node 1

PD leader

PD follower
PD followerTiDB node 1 TiDB node 2

...

leader

TiKV node 2

...

follower

TiKV node 3

...

TiKV node 4

...

Client Read request
AZ1 AZ2

Local Stale Read

Example
SELECT * FROM users JOIN orders WHERE users.id=orders.user_id

AS OF TIMESTAMP '2021-05-01 12:00:00';

Semantic
● The transaction reads local replicas
● The transaction reads the same snapshot of `users` and `orders`
● The snapshot is no staler than '2021-05-01 12:00:00'
● Read as new data as the local AZ has

Restriction of start_ts
● All data for the snapshot has been replicated to the current AZ
● No inflight commits which will update the snapshot later

Local Stale Read

Region 1

TiKV node 1

TiDB node 1

...

safe_ts2safe_ts1

safe_ts = min(safe_ts1, safe_ts2)

Region 2

Region 3

Region 1

TiKV node 1

...

Region 2

Region 3

safe_ts1 = min(safe_ts of all regions)

Maintain safe_ts
● safe_ts is the commit_ts of the latest data which is

replicated to all replicas
● Each raft group maintains a region-wide safe_ts
● TiKV maintains a store-wide safe_ts
● TiKV reports store-wide safe_ts to TiDB periodically
● TiDB maintains an AZ-wide safe_ts

Local Stale Read

TiDB node 1

Client

start_ts = max(safe_ts, stale_ts)

Stale read request
(timestamp = stale_ts)

Determine start_ts
● TiDB determines start_ts locally
● start_ts is no staler than the user-specified timestamp
● start_ts is no staler than the AZ-wide safe_ts

Summary

When data is bound to AZ
● Use placement policy to define placement of data
● Use local transactions to access local data
● Use global transactions to access global data

When data is not bound to AZ & not need strong consistency
● Use local stale read to read local data

More Resources

● Website: https://pingcap.com/
● GitHub: https://github.com/pingcap/tidb
● Twitter: https://twitter.com/PingCAP
● Slack: #everyone on Slack

https://pingcap.com/
https://github.com/pingcap/tidb
https://twitter.com/PingCAP
https://slack.tidb.io/invite?team=tidb-community&channel=everyone&ref=Percona

About Us

PingCAP is a software service provider

committed to delivering one-stop enterprise-grade

database solutions.

TiDB is an open-source, distributed New SQL

database for elastic scale and real-time analytics.

Thank You!
Q & A

