dWs$s

N#

Implementing a Hybrid
Column Level Encryption

in MySQL <>
Alexander Rubin \/

May 13, 2021

/

About me

Working with MySQL for ~15 years

« Started at MySQL AB 2006
* Sun Microsystems, Oracle (MySQL Consulting)
* Percona since 2014

* Joined the Amazon Relational Database Service (RDS) engineering team in
2020

Interests in:
 |oT / devices
* [T security

© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

Agenda

1. Existing encryption methods
* May not provide adequate encryption for sensitive data
2. Proposed method of column level encryption

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Protecting Data In MySQL

Background information and existing solutions

Protecting Data In MySQL: encryption

Encryption will protect sensitive data
Required by HIPAA, PCl compliances, etc

Amazon RDS security features:

Encryption of Data at Rest
Encryption of Data in Transit

Some sensitive data may require an additional protection

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

https://aws.amazon.com/rds/features/security/

Protecting data in MySQL: types of encryption

1 2
Data in flight Data at Rest

SSL/TLS Full disk encryption

Transparent DB Encryption

» | Field level encryption

mazon Web Services, Inc. or its Affiliates. aWS

Data at Rest Encryption: full disk encryption options
Data at Rest

Full disk encryption

 Amazon RDS or EC2: Encrypting disk with KMS

Encryption

Enable encryption
Choose to encr ypt the given instance. Master key IDs and aliases appear in the list after they have been created using the AWS
Key Management Servi le. Inf

Master key Info

(default) aws/rds v

* Full disk encryption on Linux: LUKS / etc
* Shared storage encryption

© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

Data at Rest Encryption: full disk encryption downsides
Data at Rest
Full disk encryption

Only protect from physical access to disk (or reusing
images)

If MySQL is running:
. data in MySQL files can be seen as unencrypted

. It is encrypted only when volume(s) are not mounted

© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

Data at Rest Encryption: TDE

Data at Rest

Transparent DB Encryption

Transparent Database Encryption (TDE): encrypting db files
1. InnoDB files: tablespaces, redo logs, undo logs
2. Binary logs, relay logs: for MySQL replication

3. Tmp files

dWsS

© 2021, Amazon Web Services, Inc. or its Affiliates.

Data at Rest Encryption: field/column level encryption

Data at Rest

Field level encryption

Application code encrypts needed fields.

For example:
Pll information
Medical (PHI) information
Etc

Issues:
o Key rotation
o Searches in MySQL - range search does not work
o Order by searches
o Indexes
dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Data at Rest Encryption options: comparison

Full disk

TDE

Field /
column

© 2021, Amazon Web Services,

* No application changes
needed
 Lowest overhead

* No application changes
needed
* Low overhead

* Best protection
* (Can be combined with
other options

Inc. or its Affiliates.

When system is running data is
decrypted

Does not protect from copying
database files

When MySQL is running data is
decrypted

Does not protect from
exporting data (i.e. mysqldump)

Require some application
changes
Overhead can be significant

dWs

Field Level Encryption

Implementat lon options Q

Field/column level encryption: common approach

Application encrypt/decrypt data (code)

» Data is already encrypted
* In flight (from app to MySQL)
» At rest (when MySQL stores it on disk)

mazon Web Services, Inc. or its Affiliates. aWS

Field/column level encryption: problems

1. Application needs to implement encryption
 What if we have a legacy application?
2. Need to store and rotate encryption key
3. Complicate MySQL queries:
« Range scan / order by will not work inside MySQL

dWs

021, Amazon Web Services, Inc. or its Affiliates.

Field Level Encryption

Possible approach for MySQL

Field/column level encryption for legacy application

Our Plan

1. Identify fields that require field/level encryption

2. Create encrypt /decrypt function (stored function or UDF)
3. Use MySQL rewrite plugin (+ triggers) to “inject” encryption
4. Use application encryption keys

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Implementation diagram

set @app_key='secret';

insert into employees (.. ssn)

values (.. my_encrypt(..))

select my_decrypt(ssn)

from employees where ..

ﬂ my encrypt() my_decrtypt(): stored functions we will createT

© 2021, Amazon Web Services, Inc. or its Affiliates.

dWS

Field/column level encryption for legacy application

Pre-requisites
1. Data in flight encryption:

- application connects to MySQL with SSL/TLS
2. Application stores its key securely

021, Amazon Web Services, Inc. or its Affiliates. aWS

Field/column level encryption for legacy application

Implementation 1:
create MySQL stored functions to encrypt / decrypt

use secret _schema;

create function my _encrypt(str text character set utf8)
returns text binary

return aes_encrypt(str, @app_key);

create function my decrypt(str text binary)

returns text character set utf8
return aes _decrypt(str, @app_key);

© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

Field/column level encryption for legacy application

mysql> set @app_key='secret';

Query OK, © rows affected (0.00 sec) Application sets
mysql> select hex(my_encrypt('test’)); this key
e -

| hex(my _encrypt('test')) |
e -

| 1356CAC477BAGA814054243FDBE2398F |
e -

L T TT'"T"TY"Y""™™ +
| my decrypt(my_encrypt('test')) |
L T TT'"T"TY"Y""™™ +
| test |
L T TT'"T"TY"Y""™™ +

dWS

© 2021, Amazon Web Services, Inc. or its Affiliates.

Security

(‘

.

App: Attacker
Need key to
decrypt data
Vulnerable?

© 2021, Amazon Web Services, Inc. or its Affiliates.

'\

J

\.

Man-in-the-middle
OK: can't decrypt SSL

&

(‘

>

MySQL DBA
can't decrypt

exported data
OK

'\

dWS

Vulnerable points

Application level: key needs to be protected

On disk - store in secure storage. l.e.:

« AWS Secrets Manager:
 Vault

Load key in Application memory on start

MySQL level
key can be recorded in logs (i.e. slow log, audit log etc)

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

Dealing with legacy applications

set @app_key='secret';

— o
(::7 MySQL trigger:
'111-11" ->

my_encrypt(..)

insert into employees (.. ssn)
values (.. '111-11")

<_@—

select ssn from employees..

App

Query rewrite:
ssh ->

© 2021, Amazon Web Services, Inc. or its Affiliates. a A S

Dealing with legacy applications: implementation

mysql> CREATE TABLE "employees ™ (
“id® int(11) NOT NULL AUTO_INCREMENT,

"ssn blob,
PRIMARY KEY (" id’)
) ENGINE=InnoDB;

mysql> CREATE TRIGGER encr

BEFORE INSERT on employees

FOR EACH ROW

set NEW.ssn=my encrypt(NEW.ssn);
Query 0K, © rows affected (0.01 sec)

Trigger will take care

of inserts / updates

© 2021, Amazon Web Services, Inc. or its Affiliates.

mysgl> insert into employees(ssn)
values('111-11-111");
Query OK, 1 row affected (0.00 sec)

mysql> select * from employees;

e S +
id ssh

e S +
1 I=9L1..V

e S +

1 row in set (©0.00 sec)

mysql> select my decrypt(ssn)
from employees;

e +
my_decrypt(ssn)
e +

111-11-111
e +

1 row in set (0.00 sec)

dWS

Dealing with legacy applications: implementation
Install re-write plugin: *Query rewrite plugin is not available currently on Amazon RDS

mysql> INSERT INTO query rewrite.rewrite rules (pattern, replacement)
VALUES('SELECT ssn from app.employees',
'SELECT secret_schema.my decrypt(ssn) from app.employees');
Query OK, 1 row affected (0.00 sec)

mysql> CALL query rewrite.flush _rewrite rules();
Query OK, © rows affected (0.00 sec)

mysgl> select ssn from app.employees; mysql> show warnings\G

e TR +
secret_schema.my decrypt(ssn) Level: Note
b il + Code: 1105
111-11-111 Message: Query 'select ssn from app.employees' rewritten
to 'SELECT secret_schema.my_decrypt(ssn) from
FoomTom oo + app.employees' by a query rewrite plugin
1 row in set, 1 warning (0.00 sec) 1 row in set (8.00 sec)

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html

Other operations on encrypted columns

mysgl> alter table employees change ssn ssn varbinary(255),
add key (ssn);

Query OK, © rows affected (0.02 sec)

Records: © Duplicates: © Warnings: ©

Use this query so MySQL
can use index
mysql> set @app_key='secret';

Query OK, © rows affected (0.00 sec) id: 1

select type: SIMPLE
table: employees
type: index
key: ssn
key len: 258

mysql> set @app_key='secret’;
select id, secret_schema.my_decrypt(ssn)
from employees

R et e

| id | secret_schema.my decrypt(ssn) |

e e e T + : : :
|2 | 111-11-111 Extra: US}ng where,
b e e i T Using index

Re-write CAN take

care of this as well

© 2021, Amazon Web Services, Inc. or its Affiliates.

Other operations on encrypted columns: order by

mysgl> select id, secret _schema.my decrypt(ssn), secret schema.my decrypt(last name)
from employees order by secret schema.my decrypt(last name) limit 10;

10 rows in set (29.79 sec)

mysql> alter table employees add key (last _name);

mysgl> explain select id, secret schema.my decrypt(ssn),
secret_schema.my decrypt(last name)

from employees

order by secret schema.my decrypt(last name) limit 10\G

table: employees

type: ALL
possible keys: NULL
key: NULL

key len: NULL
rows: 1045875
filtered: 100.00
Extra: Using temporary; Using filesort

© 2021, Amazon Web Services, Inc. or its Affiliates.

Order by queries
will not use

indexes and will
be slow

Performance considerations: benchmark

Without trigger: With trigger:

mysgl> insert into employees copy mysql> insert into employees copy with_trigger
select * from employees; select * from employees;

Query OK, 300024 rows affected (3.73 sec) Query OK, 300024 rows affected (7.15 sec)

Records: 300024 Duplicates: © Warnings: @ Records: 300024 Duplicates: © Warnings: ©

* Negligible / hard to measure
for single inserts

« ~2x slower for bulk inserts

© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

Field Level Encryption Implementation: Pros/Cons

« Higher level of security for

sensitive

Data is encrypted even when
database is running

« Compatible with other encryption

methods

* No application changes needed
Need to set the app key on

data

connection

© 2021, Amazon Web Services,

Inc. or its Affiliates.

Limits on SELECT quires:

* Slow ORDER BY

* Slow range queries
Performance for bulk inserts/updates
can be 2x worse
Key rotation will require re-encryption
Query text can be recorded in logs
(i.e. slow log general_log,
performance_schema, etc)

dWs

Other options

Using MySQL keyring SECRET and Asymmetric Encryption

https://mysqlserverteam.com/using-a-mysql-keyring-secret-and-asymmetric-

encryption/

This is a different setup with 2 database users

© 2021, Amazon Web Services, Inc. or its Affiliates.

dWS

https://mysqlserverteam.com/using-a-mysql-keyring-secret-and-asymmetric-encryption/

Summary

1. Discussed field level data encryption implementation
2. PRO: Transparent to the application
* Better security

* No/minimal application changes needed
3. CON: some queries will be slower, need to test/bechmark

© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

Q&A

Alexander Rubin

=,
O
Yavava

dWsS

© 2021, Amazon Web Services, Inc. or its Affiliates.

dWs$s

|
Thank youl!

LN

