
© 2021, Amazon Web Services, Inc. or its Affiliates.

Alexander Rubin
May 13, 2021

Implementing a Hybrid
Column Level Encryption
in MySQL

© 2021, Amazon Web Services, Inc. or its Affiliates.

About me

Working with MySQL for ~15 years
• Started at MySQL AB 2006

• Sun Microsystems, Oracle (MySQL Consulting)
• Percona since 2014

• Joined the Amazon Relational Database Service (RDS) engineering team in
2020

Interests in:
• IoT / devices
• IT security

© 2021, Amazon Web Services, Inc. or its Affiliates.

Agenda

1. Existing encryption methods
• May not provide adequate encryption for sensitive data

2. Proposed method of column level encryption

© 2021, Amazon Web Services, Inc. or its Affiliates.

Protecting Data In MySQL
Background information and existing solutions

© 2021, Amazon Web Services, Inc. or its Affiliates.

Protecting Data In MySQL: encryption

• Encryption will protect sensitive data
• Required by HIPAA, PCI compliances, etc

Amazon RDS security features:
• Encryption of Data at Rest
• Encryption of Data in Transit

https://aws.amazon.com/rds/features/security/

Some sensitive data may require an additional protection

https://aws.amazon.com/rds/features/security/

© 2021, Amazon Web Services, Inc. or its Affiliates.

Protecting data in MySQL: types of encryption

Data in flight Data at Rest
SSL/TLS Full disk encryption

Transparent DB Encryption

Field level encryption

1 2

© 2021, Amazon Web Services, Inc. or its Affiliates.

Data at Rest Encryption: full disk encryption options

• Amazon RDS or EC2: Encrypting disk with KMS

• Full disk encryption on Linux: LUKS / etc
• Shared storage encryption

Data at Rest

Full disk encryption

© 2021, Amazon Web Services, Inc. or its Affiliates.

Data at Rest Encryption: full disk encryption downsides

• Only protect from physical access to disk (or reusing
images)

• If MySQL is running:
• data in MySQL files can be seen as unencrypted

• It is encrypted only when volume(s) are not mounted

Data at Rest

Full disk encryption

© 2021, Amazon Web Services, Inc. or its Affiliates.

Data at Rest Encryption: TDE

Transparent Database Encryption (TDE): encrypting db files

1. InnoDB files: tablespaces, redo logs, undo logs
2. Binary logs, relay logs: for MySQL replication
3. Tmp files

Data at Rest

Transparent DB Encryption

© 2021, Amazon Web Services, Inc. or its Affiliates.

Data at Rest Encryption: field/column level encryption

Application code encrypts needed fields.
For example:

• PII information
• Medical (PHI) information
• Etc

Issues:
○ Key rotation
○ Searches in MySQL - range search does not work
○ Order by searches
○ Indexes

Data at Rest

Field level encryption

© 2021, Amazon Web Services, Inc. or its Affiliates.

Data at Rest Encryption options: comparison

Encryption
option

PROs CONs

Full disk • No application changes
needed

• Lowest overhead

• When system is running data is
decrypted

• Does not protect from copying
database files

TDE • No application changes
needed

• Low overhead

• When MySQL is running data is
decrypted

• Does not protect from
exporting data (i.e. mysqldump)

Field /
column

• Best protection
• Can be combined with

other options

• Require some application
changes

• Overhead can be significant

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field Level Encryption
Implementation options

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field/column level encryption: common approach

Application encrypt/decrypt data (code)
• Data is already encrypted

• In flight (from app to MySQL)
• At rest (when MySQL stores it on disk)

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field/column level encryption: problems

1. Application needs to implement encryption
• What if we have a legacy application?

2. Need to store and rotate encryption key
3. Complicate MySQL queries:

• Range scan / order by will not work inside MySQL

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field Level Encryption
Possible approach for MySQL

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field/column level encryption for legacy application

Our Plan
1. Identify fields that require field/level encryption
2. Create encrypt /decrypt function (stored function or UDF)
3. Use MySQL rewrite plugin (+ triggers) to “inject” encryption
4. Use application encryption keys

© 2021, Amazon Web Services, Inc. or its Affiliates.

Implementation diagram

MySQLApp

set @app_key='secret';

insert into employees (… ssn)
values (… my_encrypt(…))

select my_decrypt(ssn)
from employees where …

my_encrypt() my_decrtypt(): stored functions we will create

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field/column level encryption for legacy application

Pre-requisites
1. Data in flight encryption:

• application connects to MySQL with SSL/TLS
2. Application stores its key securely

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field/column level encryption for legacy application

Implementation 1:
create MySQL stored functions to encrypt / decrypt
use secret_schema;
create function my_encrypt(str text character set utf8)
returns text binary
return aes_encrypt(str, @app_key);

create function my_decrypt(str text binary)
returns text character set utf8
return aes_decrypt(str, @app_key);

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field/column level encryption for legacy application
mysql> set @app_key='secret';
Query OK, 0 rows affected (0.00 sec)

mysql> select hex(my_encrypt('test’));
+----------------------------------+
| hex(my_encrypt('test')) |
+----------------------------------+
| 1356CAC477BA0A814054243FDBE2398F |
+----------------------------------+

mysql> select my_decrypt(my_encrypt('test'));
+--------------------------------+
| my_decrypt(my_encrypt('test')) |
+--------------------------------+
| test |
+--------------------------------+

Application sets
this key

© 2021, Amazon Web Services, Inc. or its Affiliates.

Security

MySQLApp

Man-in-the-middle
OK: can’t decrypt SSL

MySQL DBA
can’t decrypt
exported data

OK

App: Attacker
Need key to
decrypt data
Vulnerable?

© 2021, Amazon Web Services, Inc. or its Affiliates.

Vulnerable points

Application level: key needs to be protected
On disk - store in secure storage. I.e.:

• AWS Secrets Manager: https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

• Vault
Load key in Application memory on start

MySQL level
key can be recorded in logs (i.e. slow log, audit log etc)

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

© 2021, Amazon Web Services, Inc. or its Affiliates.

Dealing with legacy applications

MySQLApp

set @app_key='secret';

insert into employees (… ssn)
values (… '111-11')

select ssn from employees…

MySQL trigger:
'111-11' ->
my_encrypt(…)

Query rewrite:
ssn ->
my_decrypt(ssn)

© 2021, Amazon Web Services, Inc. or its Affiliates.

Dealing with legacy applications: implementation
mysql> insert into employees(ssn)

values('111-11-111');
Query OK, 1 row affected (0.00 sec)

mysql> select * from employees;
+----+------------------+
| id | ssn |
+----+------------------+
| 1 | !=9Ll..V. |
+----+------------------+
1 row in set (0.00 sec)

mysql> select my_decrypt(ssn)
from employees;

+-----------------+
| my_decrypt(ssn) |
+-----------------+
| 111-11-111 |
+-----------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE `employees` (
`id` int(11) NOT NULL AUTO_INCREMENT,
...

`ssn` blob,
PRIMARY KEY (`id`)

) ENGINE=InnoDB;

mysql> CREATE TRIGGER encr
BEFORE INSERT on employees
FOR EACH ROW
set NEW.ssn=my_encrypt(NEW.ssn);

Query OK, 0 rows affected (0.01 sec)

Trigger will take care
of inserts / updates

© 2021, Amazon Web Services, Inc. or its Affiliates.

Dealing with legacy applications: implementation

mysql> INSERT INTO query_rewrite.rewrite_rules (pattern, replacement)
VALUES('SELECT ssn from app.employees',

'SELECT secret_schema.my_decrypt(ssn) from app.employees');
Query OK, 1 row affected (0.00 sec)

mysql> CALL query_rewrite.flush_rewrite_rules();
Query OK, 0 rows affected (0.00 sec)

mysql> select ssn from app.employees;
+-------------------------------+
| secret_schema.my_decrypt(ssn) |
+-------------------------------+
| 111-11-111 |
+-------------------------------+
1 row in set, 1 warning (0.00 sec)

Install re-write plugin:
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html

mysql> show warnings\G

Level: Note
Code: 1105

Message: Query 'select ssn from app.employees' rewritten
to 'SELECT secret_schema.my_decrypt(ssn) from
app.employees' by a query rewrite plugin
1 row in set (0.00 sec)

Re-write will take
care of selects

* Query rewrite plugin is not available currently on Amazon RDS

https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html

© 2021, Amazon Web Services, Inc. or its Affiliates.

Other operations on encrypted columns
mysql> alter table employees change ssn ssn varbinary(255),

add key (ssn);
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> set @app_key='secret';
Query OK, 0 rows affected (0.00 sec)

mysql> set @app_key='secret’;
select id, secret_schema.my_decrypt(ssn)
from employees
where ssn=secret_schema.my_encrypt('111-11-111');

+----+-------------------------------+
| id | secret_schema.my_decrypt(ssn) |
+----+-------------------------------+
| 2 | 111-11-111 |
+----+-------------------------------+

Use this query so MySQL
can use index

id: 1
select_type: SIMPLE

table: employees
type: index
key: ssn

key_len: 258
…

Extra: Using where;
Using index

Re-write CAN take
care of this as well

© 2021, Amazon Web Services, Inc. or its Affiliates.

Other operations on encrypted columns: order by
mysql> select id, secret_schema.my_decrypt(ssn), secret_schema.my_decrypt(last_name)
from employees order by secret_schema.my_decrypt(last_name) limit 10;
...
10 rows in set (29.79 sec)

mysql> alter table employees add key (last_name);

mysql> explain select id, secret_schema.my_decrypt(ssn),
secret_schema.my_decrypt(last_name)

from employees
order by secret_schema.my_decrypt(last_name) limit 10\G

…
table: employees
type: ALL

possible_keys: NULL
key: NULL

key_len: NULL
rows: 1045875

filtered: 100.00
Extra: Using temporary; Using filesort

Order by queries
will not use
indexes and will
be slow

© 2021, Amazon Web Services, Inc. or its Affiliates.

Performance considerations: benchmark

mysql> insert into employees_copy
select * from employees;

Query OK, 300024 rows affected (3.73 sec)
Records: 300024 Duplicates: 0 Warnings: 0

• Negligible / hard to measure
for single inserts
• ~2x slower for bulk inserts

mysql> insert into employees_copy_with_trigger
select * from employees;

Query OK, 300024 rows affected (7.15 sec)
Records: 300024 Duplicates: 0 Warnings: 0

Without trigger: With trigger:

© 2021, Amazon Web Services, Inc. or its Affiliates.

Field Level Encryption Implementation: Pros/Cons
PROs CONs

• Higher level of security for
sensitive data
• Data is encrypted even when

database is running
• Compatible with other encryption

methods
• No application changes needed

• Need to set the app key on
connection

• Limits on SELECT quires:
• Slow ORDER BY
• Slow range queries

• Performance for bulk inserts/updates
can be 2x worse

• Key rotation will require re-encryption
• Query text can be recorded in logs

(i.e. slow log general_log,
performance_schema, etc)

© 2021, Amazon Web Services, Inc. or its Affiliates.

Other options

Using MySQL keyring SECRET and Asymmetric Encryption
https://mysqlserverteam.com/using-a-mysql-keyring-secret-and-asymmetric-
encryption/

This is a different setup with 2 database users

https://mysqlserverteam.com/using-a-mysql-keyring-secret-and-asymmetric-encryption/

© 2021, Amazon Web Services, Inc. or its Affiliates.

Summary

1. Discussed field level data encryption implementation
2. PRO: Transparent to the application

• Better security
• No/minimal application changes needed

3. CON: some queries will be slower, need to test/bechmark

© 2021, Amazon Web Services, Inc. or its Affiliates.

Q&A
Alexander Rubin

© 2021, Amazon Web Services, Inc. or its Affiliates.

Thank you!

