

# PERCONA LIVEONLINE MAY 12 - 13th

#### MongoDB surviving after unclean shutdowns



#### **About Me**

- Senior Database Engineer
- 15 Years of experience with data
- Started with Relational Databases in Sql Server 7.0
- Today I work in Brazil helping DBACorp' customers get the best results.
- Over the Years have worked with:
  - MongoDB
  - SQL Server
  - Cassandra
  - Redis
  - Kafka

#### Alexandre Araujo



alexandre.araujo@dbacorp.com.br



@aleraraujo16



linkedin.com/in/alexandrearaujo16/



## Agenda

- MongoDB internally has a powerful mechanism to face unexpected interruptions.
- We will talk about:
  - What WAL protocols means and how it was implemented to the MongoDB
    - How works the journal process
    - What kind of disasters impacts the MongoDB database
    - Why we have must concern about points of failure
    - When recover process takes action
    - And some configurations and strategies that you should use in your deploy.

#### **Database Darwinism**



After World War II

**FLAT** 

**FILES** 



Magnetic Tape



Magnetic Disk



After Cold War











**Cloud and Data Explosion** 











### Open Source Database Trends 2021



## MongoDB Storage Engines

- Storage Engine is responsible for managing how data is stored.
- MongoDB provides a variety of Storage engines
- You can choose the appropriate Storage engine according your deploy.
- WiredTiger is the default Storage engine since MongoDB 3.2.



## WiredTiger Storage Engine

- WiredTiger uses snappy compression by default with up to 80% compression
- The WiredTiger in MongoDB uses C-API although exists WiredTiger in Python and Java.
- WT takes advantage of modern hardware and more performance between threads
- Eliminate blocking due to concurrency control using MVCC
- Between 7 and 10x better write throughput from older storages
- Documentation: https://source.wiredtiger.com/10.0.0/index.html

## WiredTiger - Architecture



## WiredTiger Storage Engine

| Durability Mode<br>Three Modes | MongoD Crash            | OS Crash                |
|--------------------------------|-------------------------|-------------------------|
| In-Memory                      | Potential data Loss     | Potential data Loss     |
| Write-No-Sync                  | Data Always Recoverable | Potential data Loss     |
| FULL SYNC                      | Data Always Recoverable | Data Always Recoverable |

Two modes of durability in MongoDB



#### **WAL Protocol**

- Write Ahead Logging protocol, most well-know recovery method, is the standard industry ensures that a record of every change to the database is available while attempting to recover from a crash
- When a data is changed and committed it is forced do stable Storage
- Traditional databases use a write-ahead log for recovery
- In the ACID systems WAL generally referes to Durability



### A data journey from user writes until commit



## WAL – Write Ahead Logging



#### Journalism

- WT creates one journal record for each write and index operation
- Max size limit is 100 megabytes and the minimum jornal record size is 128 bytes
- This is not the Replication OpLog also it is not user-level transactions
- Automatically removes old journal files to maintain only the files needed to recover from last checkpoint

#### Journalism - Structure

- Location at: dbpath/jornal/WiredTigerLog.0000000001
- A record per each client initiated write operation.
- WiredTiger creates a single jornal record that includes both the update operation and it associated index modifications.
- Each record has a unique identifier.

## Checkpoints

- Internal WiredTiger process
- Checkpoints flushs dirty data at every 60 seconds creating stable data
- The cosistent point-in-time snapshot of data writes all in memory to disk and ensures there is no point in time where data might be lost.
- Checkpoint will mark inside the jornal indicating the last checkpoint

#### Journalism occurs at every 100 ms



#### Checkpoints occurs at every 60 ms



### Failure Scenarios

- What happens after a crash:
  - The data is lost but the file system is consistent
  - The log has exactly the right information to fix the problem
- Kinds of failure:
  - Hardware Failure
  - Power Failure
  - Storage Volume Failure
  - Kill unxpected mongod process
  - Unexpected restart S.O.



#### Recovering – How mongod Recovers from crash

- Faster recovery = checkpoint + journal
- First check data files to find the id of the last checkpoint
- Then check the journal files for the record that matches of last checkpoint
- And finally applies the jornal files since the last checkpoint
- MongoDB does not guarantee storage failure after a checkpoint.

### Recovery Process

WRITE OPERATION WT\_MEMORY

Seahawks

**Panthers** 

**Packers** 

**Steelers** 

**Eagles** 

COMMIT DATA JOURNAL

Seahawks

**Panthers** 

**Packers** 

Checkpoint

Steelers

Checkpoint

Eagles

Crash

Recovery

COLLECTION FILES

Seahawks

**Panthers** 

Packers

Steelers

Eagles

## MongoDB InMemory

- Performance is a good indicator for use MongoDB in Memory
- It become durable when filling the memory buffer
- Become durable when a new jornal is created
- Idle systems can trigger the write journal every 50ms
- Crashs does not guarantee data after last checkpoint

## **Tuning**

- Change configuration option "commitIntervalMs" according your workloads
- The jornal default value is 100 ms and range can be between 1 and 500 ms
- Use symlink for journal to a different hubs increasing the concorrency of your write deploy
- Big checkpoints can cause painful performance and you can control the WiredTiger CacheSize limiting the amount of dirty pages and sizing eviction threads
- TRADE-OFFS
  - More frequent checkpoints means less record that you reply and more faster your recovery althoug more intense use of ou storage
  - Less frequent checkpoints means more record that you reply and more longer will be your recovery process



## Open Source is the new oil.

## Thanks!

#### Any questions?

You can find me at:

- @aleraraujo16 Twitter
- alexandre.araujo@dbacorp.com.br

## THANK YOU!



PERCONA LIVEONLINE MAY 12 - 13th 2021