
Monitoring and Tracing MySQL
or MariaDB Server With

Bpftrace
Problems and Solutions

Valerii Kravchuk, Principal Support Engineer, MariaDB
valerii.kravchuk@mariadb.com

1

www.percona.com

Who am I and What Do I Do?
Valerii (aka Valeriy) Kravchuk:
● MySQL Support Engineer in MySQL AB, Sun and Oracle, 2005-2012
● Principal Support Engineer in Percona, 2012-2016
● Principal Support Engineer in MariaDB Corporation since March 2016
● http://mysqlentomologist.blogspot.com - my blog about MariaDB and

MySQL (including some HowTos, not only MySQL bugs marketing)
● I often write about bpftrace in my blog...
● https://www.facebook.com/valerii.kravchuk - my Facebook page
● @mysqlbugs #bugoftheday
● MySQL Community Contributor of the Year 2019
● I speak about MySQL and MariaDB in public. Some slides from previous talks

are here and there…
● “I solve problems”, “I drink and I know things”

2

http://mysqlentomologist.blogspot.com
http://mysqlentomologist.blogspot.com/search/label/howto
http://mysqlentomologist.blogspot.com/search/label/bpftrace
https://www.facebook.com/valerii.kravchuk
https://twitter.com/mysqlbugs
https://www.percona.com/blog/2019/05/29/mysql-community-awards-at-percona-live-2019/
https://www.slideshare.net/valeriikravchuk1
https://www.slideshare.net/ValeriyKravchuk
http://mysqlentomologist.blogspot.com/2016/01/im-winston-wolf-i-solve-problems.html
https://youtu.be/GYh7smM6YpM

www.percona.com

Disclaimers
● Since September, 2012 I am an Independent Consultant

providing services to different companies
● All views, ideas, conclusions, statements and approaches

in my presentations and blog posts are mine and may not
be shared by any of my previous, current and future
employees, customers and partners

● All examples are either based on public information or are
truly fictional and has nothing to do with any real persons or
companies. Any similarities are pure coincidence :)

● The information presented is true to the best of my
knowledge

3

www.percona.com

Sources of tracing and profiling information for
MySQL, MariaDB or Percona servers
● Trace files from -debug binaries
● Extended slow query log (Percona, MariaDB)
● show [global] status, show engine innodb status\G
● InnoDB-related tables in the INFORMATION_SCHEMA
● userstat - operations per user, client, table or index (Percona,

MariaDB)
● show profiles;
● PERFORMANCE_SCHEMA that was supposed to be an

ultimate solution
● OS-level tracing and profiling tools:

○ /proc sampling
○ ftrace and perf profiler
○ eBPF, bcc tools and bpftrace

● tcpdump analysis
4

https://www.percona.com/doc/percona-server/LATEST/diagnostics/slow_extended.html
https://mariadb.com/kb/en/library/information-schema-innodb-tables/
https://mariadb.com/kb/en/user-statistics/
https://vividcortex.com/blog/2014/02/25/performance-schema-slowquery-log-tcp-sniffing/

www.percona.com

What is this session about?

● It’s about tracing and profiling MySQL or MariaDB server in
production on recent Linux versions (kernel 5.x.y, the
newer the better) with eBPF-based bpftrace tool

● I plan to present and discuss some (mostly resolvable)
dynamic tracing problems one may hit while working with
MySQL or MariaDB servers

● Performance impact of tracing and profiling in production
matters

● Why not about Performance Schema?
● Why not about perf and bcc tools?

5

https://en.wikipedia.org/wiki/Tracing_(software)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://github.com/iovisor/bpftrace
https://www.slideshare.net/ValeriyKravchuk/applying-profilers-to-my-sql-fosdem-2017
https://mariadb.com/kb/en/performance-schema-overview/

www.percona.com

So, what do I suggest?
● Use modern Linux tracing tools while troubleshooting MySQL server!
● Yes, all that kernel and user probes and tracepoints, with bpftrace if Linux

kernel version allows to use it
● Brendan D. Gregg explained the role of bpftrace in the global picture:

6

http://www.brendangregg.com/

www.percona.com

Tracing events sources
● So, tracing is basically doing something whenever specific events occur
● Event data can come from the kernel or from userspace (apps and libraries).

Some of them are automatically available without further upstream
developer effort, others require manual annotations:

● Kprobe - the mechanism that allows tracing any function call inside the
kernel

● Kernel tracepoint - tracing custom events that the kernel developers have
defined (with TRACE_EVENT macros).

● Uprobe - for tracing user space function calls
● USDT (e.g. DTrace probes) stands for Userland Statically Defined Tracing

7

Automatic Manual annotations

Kernel kprobes Kernel tracepoints

Userspace uprobes USDT

www.percona.com

eBPF: extended Berkeley Packet Filter
● eBPF is a tiny language for a VM that can be executed inside Linux Kernel. eBPF instructions can

be JIT-compiled into a native code. eBPF was originally conceived to power tools like tcpdump
and implement programmable network packed dispatch and tracing. Since Linux 4.1, eBPF
programs can be attached to kprobes and later - uprobes, enabling efficient programmable tracing

● Brendan Gregg explained it here:

8

https://lwn.net/Articles/740157/
http://www.brendangregg.com/ebpf.html

www.percona.com

More about eBPF
● Julia Evans explained it here:

1. You write an “eBPF program” (often in C, Python or use a tool that generates that program
for you) for LLVM. It’s the “probe”.

2. You ask the kernel to attach that probe to a kprobe/uprobe/tracepoint/dtrace probe
3. Your program writes out data to an eBPF map / ftrace / perf buffer
4. You have your precious preprocessed data exported to userspace!

● eBPF is a part of any modern Linux (kernel 4.9+):
4.1 - kprobes
4.3 - uprobes
4.6 - stack traces, count and hist builtins (use PER CPU maps for accuracy and efficiency)
4.7 - tracepoints
4.9 - timers/profiling

● You don’t have to install any kernel modules
● You can define your own programs to do any fancy aggregation you want, so

it’s really powerful
● DBAs usually use eBPF via some existing bcc frontend. Check some here.
● Recently a very convenient bpftrace frontend was added

9

https://jvns.ca/blog/2017/07/05/linux-tracing-systems/#ebpf
https://ebpf.io/
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1-builtins-2
https://github.com/iovisor/bcc
http://mysqlentomologist.blogspot.com/2020/09/bcc-tools-for-disk-io-analysis-and-more.html

bpftrace as a frontend for eBPF
● bpftrace (frontend with pattern/action based programming language) allows

to define actions for probes presented below in easy and flexible way
● How to start using bpftrace? You need recent enough kernel 5.x.y, install

the package or build it from GitHub source and then...

10

https://github.com/iovisor/bpftrace
https://www.mankier.com/8/bpftrace
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://mysqlentomologist.blogspot.com/2019/10/dynamic-tracing-of-mariadb-server-with.html

Check bpftrace --help output

openxs@ao756:~$ bpftrace --version
bpftrace v0.12.0-35-g4dc3
openxs@ao756:~$ bpftrace --help
USAGE:

bpftrace [options] filename
bpftrace [options] - <stdin input>
bpftrace [options] -e 'program'

OPTIONS:
-B MODE output buffering mode ('full', 'none')
-f FORMAT output format ('text', 'json')
-o file redirect bpftrace output to file
-d debug info dry run
-dd verbose debug info dry run
-e 'program' execute this program
-h, --help show this help message

11

Check bpftrace --help output (more)

-I DIR add the directory to the include search path
--include FILE add an #include file before preprocessing
-l [search] list probes
-p PID enable USDT probes on PID
-c 'CMD' run CMD and enable USDT probes on resulting

process
--usdt-file-activation

 activate usdt semaphores based on file path
--unsafe allow unsafe builtin functions (and more)
-q keep messages quiet
-v verbose messages
--info Print information about kernel BPF support
-k emit a warning when a bpf helper returns an

error (except read functions)
-kk check all bpf helper functions
-V, --version bpftrace version
--no-warnings disable all warning messages

12

Environment variables for bpftrace (--help output)

ENVIRONMENT:
BPFTRACE_STRLEN [default: 64] bytes on BPF stack per

str()
BPFTRACE_NO_CPP_DEMANGLE [default: 0] disable C++ symbol

demangling
BPFTRACE_MAP_KEYS_MAX [default: 4096] max keys in a map
BPFTRACE_CAT_BYTES_MAX [default: 10k] maximum bytes read by

cat builtin
BPFTRACE_MAX_PROBES [default: 512] max number of probes
BPFTRACE_LOG_SIZE [default: 1000000] log size in bytes
BPFTRACE_PERF_RB_PAGES [default: 64] pages per CPU to allocate

for ring buffer
BPFTRACE_NO_USER_SYMBOLS [default: 0] disable user symbol

resolution
BPFTRACE_CACHE_USER_SYMBOLS [default: auto] enable user symbol

cache
BPFTRACE_VMLINUX [default: none] vmlinux path used for

kernel symbol resolution
BPFTRACE_BTF [default: none] BTF file

13

Read the Reference Guide - Probes

● The program consists of one or more of the following sequences:
probe[,probe,...] [/filter/] { action }

● Probes:
○ BEGIN - triggered before all other probes are attached
○ kprobe - kernel function start
○ kretprobe - kernel function return
○ uprobe - user-level function start
○ uretprobe - user-level function return
○ tracepoint - kernel static tracepoints
○ usdt - user-level static tracepoints (not used in MySQL code any more)
○ profile - timed sampling
○ interval - timed output
○ software - kernel software events (see perf, like page-faults or cs)
○ hardware - processor-level events (see perf, like cycles or cache-misses)
○ watchpoint - memory (by address) watchpoints provided by the kernel (r:w:x)
○ END - triggered after all other probes are detached

14

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#13-beginend-built-in-events
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1-kprobekretprobe-dynamic-tracing-kernel-level
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#3-uprobeuretprobe-dynamic-tracing-user-level
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#5-tracepoint-static-tracing-kernel-level
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#7-usdt-static-tracing-user-level
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#9-profile-timed-sampling-events
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#10-interval-timed-output
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#11-software-pre-defined-software-events
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#12-hardware-pre-defined-hardware-events
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#14-watchpointasyncwatchpoint-memory-watchpoints

Read the Reference Guide - Language

● For me the bpftrace “language” resembles awk (see the Reference Guide):
○ {...}: Action Blocks - you can group statements separated by ;
○ /.../: Filtering - optional, you can specify any condition using arguments, variables...
○ //, /*: Comments - single line and multi-line comments
○ ->: C Struct Navigation - you can refer to struct fields with -> operator
○ struct: Struct Declaration - you can declare structures like in C
○ ? :: ternary operators - like in C
○ if () {...} else {...} - conditional execution
○ unroll () {...}: repeat the body N times. For example, try this:

'BEGIN { $i = 1; unroll(5) { printf("i: %d\n", $i); $i = $i +
1; } exit() }'

○ ++ and --: increment operators - increment or decrement counters in maps or vars
○ []: Array access - to access one-dimensional, constant arrays
○ Integer casts of 64 bit signed integers: uint8, int8, uint16, … uint64, int64
○ Looping constructs - C style while loops, with continue and break, 5.3+
○ return: Terminate Early - exist the current probe (vs exit() function)
○ (,): Tuples - you can define variables with tuples, access with . index ($t.2)

15

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1--action-blocks
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#2--filtering
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#3---comments
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#4---c-struct-navigation
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#5-struct-struct-declaration
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#6---ternary-operators
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#7-if---else--if-else-statements
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#8-unroll---unroll
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#9--and----increment-operators
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#10--array-access
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#11-integer-casts
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#12-looping-constructs
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#13-return-terminate-early
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#14----tuples

Read the Reference Guide - Variables

● See “Variables”:
○ Builtins - pid, tid, uid, gid, cpu, comm, retval, func, probe, rand,

cgroup, arg0, arg1, ..., argN. - arguments to the traced function;
assumed to be 64 bits wide, and more …

○ nsecs, elapsed: - timestamp and elapsed time since bpftrace
initialization, in nanoseconds

○ @, $: Basic Variables - global (@a), per-thread (@a[tid]) and scratch ($a)
○ @[]: Associative Arrays - BPF map, @start[tid] = nsecs;

@memory[tid,ustack] = retval;
○ kstack: Stack Traces, Kernel - alias for kstack() function
○ ustack: Stack Traces, User - alias for ustack() function
○ $1, ..., $N, $#: Positional Parameters - command line arguments, may be

used in probe too

16

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#variables
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1-builtins
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#2---basic-variables
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#3--associative-arrays
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#7-kstack-stack-traces-kernel
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#8-ustack-stack-traces-user
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#9-1--n--positional-parameters

Read the Reference Guide - Functions

● See “Functions”:
○ printf(char *fmt, ...) - Print formatted
○ print(...) - Print a non-map value with default formatting
○ str(char *s [, int length]) - Returns the string pointed to by s
○ system(char *cmd) - Execute shell command
○ exit() - Quit bpftrace
○ cgroupid(char *path) - Resolve cgroup ID
○ kstack([StackMode mode,][int level]) - Kernel stack trace
○ ustack([StackMode mode,][int level]) - User stack trace
○ strncmp(char *s1, char *s2, int n) - Compare first n characters

of two strings
○ sizeof(...) - Return size of a type or expression
○ ...

17

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#functions

Read the Reference Guide - Map Functions

● Maps are special BPF data types that can be used to store
counts, statistics, and histograms.

● When bpftrace exits all maps are printed
● See “Map Functions”:

○ count() - Count the number of times this function is called
○ sum(int n), avg(int n), min(int n), max(int n) - sum, average etc
○ stats(int n) - Return the count, average, and total for this value
○ hist(int n) - Produce a log2 histogram of values of n
○ lhist(int n, int min, int max, int step) - Produce a linear histogram of values of n
○ delete(@x[key]) - Delete the map element passed in as an argument
○ print(@x[, top [, div]]) - Print the map, optionally the top entries only and with a

divisor
○ clear(@x) - Delete all keys from the map
○ zero(@x) - Set all map values to zero

18

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#map-functions

Study at least one-liner bpftrace examples

● https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.
md

● Listing probes that match a template:
bpftrace -l 'tracepoint:syscalls:sys_enter_*'

● Tracing file opens may look as follows:
bpftrace -e 'tracepoint:syscalls:sys_enter_openat \
{ printf("%s %s\n", comm, str(args->filename)); }'

● Syscall count by program:
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm]
= count(); }'

● Read size distribution by process:
bpftrace -e 'tracepoint:syscalls:sys_exit_read { @[comm]
= hist(args->ret); }'

● More from Brendan Gregg (as of August 2019) on it is here

19

https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md
https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md
https://opensource.com/article/19/8/introduction-bpftrace

Check and use existing bpftrace programs

● They are in the tools subdirectory:

[root@fc31 tools]# ls
bashreadline.bt loads_example.txt syscount_example.txt
bashreadline_example.txt mdflush.bt tcpaccept.bt
biolatency.bt mdflush_example.txt tcpaccept_example.txt
biolatency_example.txt naptime.bt tcpconnect.bt
biosnoop.bt naptime_example.txt tcpconnect_example.txt
biosnoop_example.txt oomkill.bt tcpdrop.bt
biostacks.bt oomkill_example.txt tcpdrop_example.txt
biostacks_example.txt opensnoop.bt tcplife.bt
bitesize.bt opensnoop_example.txt tcplife_example.txt
bitesize_example.txt pidpersec.bt tcpretrans.bt
capable.bt pidpersec_example.txt tcpretrans_example.txt
capable_example.txt runqlat.bt tcpsynbl.bt
…

● Ready to use for ad hoc OS level tracing and monitoring
● Good examples on how to use kprobes and tracepoints, clean up everything,

use hist() and other built in functions
● See my blog post for a lot more details

20

https://github.com/iovisor/bpftrace/tree/master/tools
https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and_24.html

Code review of biosnoop.bt

● File starts with shebang line and #include directive:

#!/usr/bin/env bpftrace
#include <linux/blkdev.h>

● Comments:

/*

* biosnoop.bt Block I/O tracing tool, showing per I/O latency.

 * For Linux, uses bpftrace, eBPF.
 *
 * TODO: switch to block tracepoints. Add offset and size columns.*/

● BEGIN probe to print the header line:

BEGIN
{
 printf("%-12s %-7s %-16s %-6s %7s\n", "TIME(ms)", "DISK", "COMM",
"PID", "LAT(ms)");
}

21

Code review of biosnoop.bt (more…)

● Kernel probes for start and end of block I/O:

kprobe:blk_account_io_start
{
 @start[arg0] = nsecs;
 @iopid[arg0] = pid;
 @iocomm[arg0] = comm;
 @disk[arg0] = ((struct request *)arg0)->rq_disk->disk_name;
}

kprobe:blk_account_io_done
/@start[arg0] != 0 && @iopid[arg0] != 0 && @iocomm[arg0] != ""/
{
 $now = nsecs;
 printf("%-12u %-7s %-16s %-6d %7d\n",
 elapsed / 1e6, @disk[arg0], @iocomm[arg0], @iopid[arg0],
 ($now - @start[arg0]) / 1e6);

 delete(@start[arg0]);
 delete(@iopid[arg0]);
 delete(@iocomm[arg0]);
 delete(@disk[arg0]);
}

22

Code review of biosnoop.bt (END probe etc)

● We do not want to print maps content at the end, as this is a monitoring tool
for interactive use

● So, we clear all the maps in the END probe:

END
{
 clear(@start);
 clear(@iopid);
 clear(@iocomm);
 clear(@disk);
}

● This approach is typical for interactive monitoring tools

● Other option (syscount.bt) is to collect the data and print at the end:

END {
 printf("\nTop 10 syscalls IDs:\n");
 print(@syscall, 10);
 clear(@syscall); … }

23

www.percona.com

Adding a uprobe to MariaDB 10.5 with bpftrace
● The idea is to add dynamic probes to capture SQL queries (and their

execution times)
● This was done on Fedora 31, see my blog post for the details
● First I had to find out with gdb or code where is the query stored/passed
● I already know that it is in the third argument in this call:

dispatch_command(enum_server_command, THD*, char*, ...)

● Then it’s just as easy as follows (note the mangled function name):

[openxs@fc31 ~]$ sudo bpftrace -e '
uprobe:/home/openxs/dbs/maria10.5/bin/mariadbd:_Z16dispatch_com
mand19enum_server_commandP3THDPcjbb { @sql[tid] = str(arg2);
@start[tid] = nsecs; }
uretprobe:/home/openxs/dbs/maria10.5/bin/mariadbd:_Z16dispatch_
command19enum_server_commandP3THDPcjbb /@start[tid] != 0/ {
printf("%s : %u %u ms\n", @sql[tid], tid, (nsecs -
@start[tid])/1000000); } '

 24

https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and.html
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1-builtins

www.percona.com

Adding a uprobe to MariaDB 10.5 with bpftrace
● We have queries captured with probe added on previous slide:

Attaching 2 probes...
select sleep(1) : 4029 1000 ms
 : 4029 0 ms
select sleep(2) : 4281 2000 ms
 : 4281 0 ms
select sleep(3) : 4283 3000 ms
 : 4283 0 ms
select sleep(4) : 4282 4000 ms
 : 4282 0 ms
^C
...

● We do not need to find addresses, understand the way parameters are
passed via CPU registers, and usually can access structure fields etc, but
studying the source code of the specific version is still essential

● Versions 0.11+ understands non-mangled C++ function signatures...

25

Getting stack traces with bpftrace

● See ustack() etc in the Reference Guide
● This is how we can use bpftrace as a poor man’s profiler:

sudo bpftrace -e 'profile:hz:99 /comm == "mariadbd"/
{printf("# %s\n", ustack(perf));}' > /tmp/ustack.txt

● We get output like this by default (perf argument adds address etc):
...
mysqld_stmt_execute(THD*, char*, unsigned int)+37
dispatch_command(enum_server_command, THD*, char*,
unsigned int, bool, bool)+5123
do_command(THD*)+368
tp_callback(TP_connection*)+314
worker_main(void*)+160
start_thread+234

● See my recent blog post for more details on what you may want to do next :)

26

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#16-ustack-stack-traces-user
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://mysqlentomologist.blogspot.com/2020/01/using-bpftrace-on-fedora-29-more.html

Tracing pthread_mutex_lock with bpftrace

● You can find more details in my recent blog post
● But basically we need to trace pthread_mutex_lock calls in the

libpthread.so.* and count different strack traces that led to them, then output
the summary:
[openxs@fc31 ~]$ ldd /home/openxs/dbs/maria10.5/bin/mariadbd | grep thread
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f3d957bf000)
[openxs@fc31 ~]$ sudo bpftrace -e
'uprobe:/lib64/libpthread.so.0:pthread_mutex_lock /comm == "mariadbd"/ {
@[ustack] = count(); }' > /tmp/bpfmutex.txt
^C

● Take care about the performance impact for tracing frequent events!
...
[10s] thds: 32 tps: 658.05 qps: 13199.78 (r/w/o:
9246.09/2634.40/1319.30) lat (ms,95%): 227.40 err/s: 0.00 reconn/s: 0.00
[20s] thds: 32 tps: 737.82 qps: 14752.19 (r/w/o:
10325.44/2951.30/1475.45) lat (ms,95%): 193.38 err/s: 0.00 reconn/s: 0.00
[30s] thds: 32 tps: 451.18 qps: 9023.16 (r/w/o: 6316.56/1804.03/902.57)
lat (ms,95%): 320.17 err/s: 0.00 reconn/s: 0.00
[40s] thds: 32 tps: 379.09 qps: 7585.24 (r/w/o: 5310.19/1516.87/758.18)
lat (ms,95%): 390.30 err/s: 0.00 reconn/s: 0.00
...

27

https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and.html

Tracing time spent in __lll_lock_wait with bpftrace

● It turned out that tracing uncontended pthread_mutex_lock calls may give
false alarms. So we changed the approach to measuring time spent waiting...

● Main parts of the new lll_lock_wait2.bt tool:
...
interval:s:$1 { exit(); }

uprobe:/lib64/libpthread.so.0:__lll_lock_wait
/comm == "mariadbd"/ {

@start[tid] = nsecs;
@tidstack[tid] = ustack(perf); }

uretprobe:/lib64/libpthread.so.0:__lll_lock_wait
/comm == "mariadbd" && @start[tid] != 0/ {

$now = nsecs;
$time = $now - @start[tid];
@futexstack[@tidstack[tid]] += $time;
print(@futexstack);
delete(@futexstack[@tidstack[tid]]);
delete(@start[tid]);
delete(@tidstack[tid]); }

● Call stacks and times spent are printed, they are summarized externally!
28

https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and_28.html
https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and_28.html
https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and_30.html

Tracing MySQL memory allocations with bpftrace

● You can trace and monitor almost anything wth bpftrace. For example, you
can easily figure out when (and where) and how large memory areas are
really allocated:
openxs@ao756:~$ sudo bpftrace -e
'uprobe:/lib/x86_64-linux-gnu/libc.so.6:malloc / comm == "mysqld" / {
printf("Allocating %d bytes in thread %u...\n", arg0, tid); }'
Attaching 1 probe...
Allocating 32 bytes in thread 105713...
Allocating 32 bytes in thread 105713...
Allocating 40 bytes in thread 107448...

● Now when we run this:
select repeat('a',3000000);

● We see:
Allocating 3000040 bytes in thread 107448...
Allocating 3000048 bytes in thread 107448...
Allocating 40 bytes in thread 107448...
Allocating 16416 bytes in thread 107448...
Allocating 32 bytes in thread 105713...
^C

29

Tracing memory allocations with bpftrace (lame...)

● You can trace and monitor almost anything wth bpftrace, but beware of lame
approaches that work, but with a cost that makes them impractical:

uprobe:/lib64/libc.so.6:malloc /comm == "mariadbd"/ {
@size[tid] += arg0;

/* printf("Allocating %d bytes in thread %u...\n", arg0, tid); */
}

uretprobe:/lib64/libc.so.6:malloc /comm == "mariadbd" && @size[tid] > 0/
{

@memory[tid,retval] = @size[tid];
@stack[ustack(perf)] += @size[tid];

print(@stack);
clear(@stack);
delete(@size[tid]); }

uprobe:/lib64/libc.so.6:free / comm == "mariadbd" / {
delete(@memory[tid, arg0]);

/* printf("Freeing %p...\n", arg0); */
}
...

30

Performance impact of pt-pmp vs perf vs bpftrace

● Consider sysbench (I/O bound) test on Q8300 @ 2.50GHz Fedora box:
sysbench /usr/local/share/sysbench/ oltp_point_select.lua
--mysql-host=127.0.0.1 --mysql-user=root --mysql-port=3306 --threads=12
--tables=4 --table-size=1000000 --time=60 --report-interval=5 run

● I’ve executed it without tracing and with the following (compatible?) data
collections working for same 60 seconds:
1. sudo pt-pmp --interval=1 --iterations=60 --pid=`pidof mysqld`

2. sudo perf record -F 99 -a -g -- sleep 60
[perf record: Woken up 17 times to write data]
[perf record: Captured and wrote 5.464 MB perf.data (23260 samples)]

3. sudo bpftrace -e 'profile:hz:99 { @[ustack] = count(); }' >
/tmp/bpftrace-stack.txt
[openxs@fc29 tmp]$ ls -l /tmp/bpftrace-stack.txt

-rw-rw-r--. 1 openxs openxs 2980460 Jan 29 12:24 /tmp/bpftrace-stack.txt

● Average QPS: 27272 | 15279 (56%) | 26780 (98.2%) | 27237 (99.87%)

31

www.percona.com

Problems of dynamic tracing with bpftrace
● root/sudo access is required
● Limit memory and CPU usage while in kernel context
● Do as much aggregations as possible in the probes (performance impact?)
● How to add dynamic probe to some line inside the function? (possible, probe

on offset within function, but had not tried myself yet)
● C++ (mangled names, class members, virtual member functions) and

access to complex structures (bpftrace needs headers), no stable “API”
● eBPF tools rely on recent Linux kernels (4.9+). Use perf for older versions!
● -fno-omit-frame-pointer must be used everywhere to see reasonable stack

traces
● -debuginfo packages, symbolic information for binaries?
● More tools to install (and maybe build from source, had to do this even on

Ubuntu 20.04), but BTF+CO-RE etc may help.
● I had not (yet) used bpftrace for real life Support issues at customer side

(gdb and perf are standard tools for many customers already).

32

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#3-uprobeuretprobe-dynamic-tracing-user-level
http://www.brendangregg.com/blog/2020-11-04/bpf-co-re-btf-libbpf.html

www.percona.com

References to bpftrace in MySQL, MariaDB and
Percona public bugs databases...

● MySQL (site://bugs.mysql.com bpftrace): zero hits! For perf - 288 hits
● MariaDB (site://jira.mariadb.org bpftrace):

○ MDEV-24316 - on migration pre-check tool, “bpftrace script that hooks mysql and
counts when incompatible functions are used”, Daniel Black

○ MDEV-20931 - on the lack of information about shutdown progress, “...no way to
find this out without OS level tools like gdb, perf or bpftrace”, yours truly…

○ MDEV-19552 - on DROP TABLE locking SHOW etc, incomplete. “Could you try
perf or BPF trace + https://github.com/brendangregg/FlameGraph?”, Eugene
Kosov

○ MDEV-23326 - Aria TRANSACTIONAL=1 significantly slow on timezone
initialisation, in review already. Daniel Black
bpftrace -e 'tracepoint:syscalls:sys_enter_fdatasync {
@start[args->fd] = nsecs; @fd = args->fd}
tracepoint:syscalls:sys_exit_fdatasync { @us[ustack, @fd] =
hist((nsecs - @start[@fd]) / 1000); delete(@start[@fd]) } ' -p
331087

● Percona (site://jira.percona.com bpftrace): zero hits! For perf - 147 hits

33

https://jira.mariadb.org/browse/MDEV-24316
https://jira.mariadb.org/browse/MDEV-20391
https://jira.mariadb.org/browse/MDEV-19552
https://github.com/brendangregg/FlameGraph
https://jira.mariadb.org/browse/MDEV-23326

www.percona.com

Am I crazy trying these and suggesting to DBAs?
● Quite possible, maybe I just have too much free time :)
● Or maybe I do not know how to use Performance Schema properly :)
● But I am not alone… Markos Albe also speaks about bpftrace-based tools,

MariaDB engineers starts to “think” in terms of bpftrace...
● Dynamic tracers are proven tools for instrumenting OS calls (probes for

measuring I/O latency at microsecond precision, for example)
● Dynamic tracing of RDBMS userspace is a topic of growing interest, with a

lot of RAM and workloads that are often CPU-bound these days.
● For open source RDBMS like MySQL or MariaDB there is no good reason

NOT to try to use dynamic probes (at least while Performance Schema
instrumentations are not on every other line of the code :)

● eBPF with bpftrace makes it easier (to some extent) and safer to do this in
production

34

https://www.percona.com/community-blog/2020/02/05/finding-mysql-scaling-problems-using-perf/

www.percona.com

Thank you!
Questions and Answers?

Please, search and report bugs at:
● https://jira.mariadb.org
● https://jira.percona.com
● https://bugs.mysql.com

35

https://jira.mariadb.org
https://jira.percona.com
https://bugs.mysql.com

