Multi-colo Async Replication
at LinkedIn

Karthik Appigatia
Staff SRE, LinkedIn

About Me

Over a decade of experience in databases.
Working for LinkedIn for last 5 years
Authored MySQL 8 Cookbook

https://www.amazon.in/MySQL-8-Cookbook-Karthik-Appigatla-ebook/dp/B0753D434Q

LinkedlIn - https://www.linkedin.com/in/appigatla

https://www.amazon.in/MySQL-8-Cookbook-Karthik-Appigatla-ebook/dp/B0753D434Q
https://www.linkedin.com/in/appigatla

s Data Center
a.k.a Colocation
Center

a.k.a Colo

LinkedIn’s newest data center in Oregon

https://engineering.linkedin.com/blog/2016/11/linkedin_s-oregon-data-center-goes-live

Agenda

Need for Multi-colo

How we leverage Multi-colo

Managing Multi-colo Topology through Kafka
Conflicts in Multi-colo

Future Database Needs

Q&A

Need for Multi-colo

Latency numbers everyone should know

Latency Numbers Every Programmer Should Know

n ins

ansn L1 cache reference: 4ns

BRSPUNNEEE B anch mispredict: 13ns

BEEEBEEI"® | > cache reference: 17ns

Mutex lock/unlock: 67ns

100ns =®

5] Main memory reference:

100ns

snmnmmmnas 1,000ns = 1ps

8,000ns =~ 8us

Compress 1KB wth Zippy:

10,000ns = 10us = ™

Send 2,000 bytes over
commodity network:
32,000ns = 32us

SSD random read:
18,000ns = 18us

Read 1,000,000 bytes

sequentially from memory:

239,000ns = 239us

Round trip in same

= datacenter: 500,000ns =

500us

1,000,000ns = 1ms = ™

Read 1,000,000 bytes
sequentially from SSD:
4,000,000ns = 4ms

Disk seek: 9,000,000ns =
9ms

Read 1,000,000 bytes
sequentially from disk:
14,000,000ns = 14ms

Packet roundtrip CA to
Netherlands:
150,000,000ns = 150ms

Source: https://colin-scott.github.io/personal_website/research/interactive latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

Limited by Speed of Light

Cladding

—

\

Acceptance
cone K "
/ -

Cladding

N

Light does not travel in absolute straight line inside a
fibre optic cable, instead it bounces off the claddings.

Assuming best possible case

Aerial Distance between CA and Netherlands ~ 2000 Kilometers

Speed of light

Light takes 9000/300000

Best possible case

~ 300000 Kilometers/second

~ 30 milliseconds to travel from CA to Netherlands

~ 60 milliseconds (Round Trip)

Still 60ms/0.5ms = 120 times slower than reading from same data center

How bad is it to read from remote colo

Round frip within same datacenter 500,000 ns =0.5ms
Send packet CA->Netherlands->CA 150,000,000 ns = 150 ms

Reading from remote colo is 150ms/0.5ms = 300 times slower than
reading from same colo

Read 1 MB sequentially frorm memory 825,000 ns =825 s
Read 1 MB sequentially from disk 3,000 ns = 3 us

Reading from magnetic disk is 825us/3us = 275 times slower than
reading from main memory

Performance impact of Performance impact of
reading from magnetic disk ~ reading from cross-colo
rather than memory which is 2000 KMs away

Multi-Colo

@ Awilable region

© Availability Zones available

New Zealand North

@ Announced Availability Zones
& Announced region with Availability Zones

https.//azure.microsoft.com/en-us/global-infrastructure/geographies/

https://azure.microsoft.com/en-us/global-infrastructure/geographies/

india

P south India

@ Awilable region

© Availability Zones available

New Zealand North

@ Announced Availability Zones

4
https.//azure.microsoft.com/en-us/global-infrastructure/geographies/

& Announced region with Availability Zones

https://azure.microsoft.com/en-us/global-infrastructure/geographies/

How to leverage Mulfi-colo

Multi-Colo Advantages

Low latency reads and writes across
all geographic locations

High Availability across regions

Easy failover across regions

LinkedIn’'s EDGE

COLO 1

Dedicated
Network

Point of Presence (PoP)
Public
Infernet Sticky Routing Service

COLO 2

Multi-Colo Challenges
e Consistency

e Topology

o Conflicts

Multi-Colo Challenges
e Consistency
o Strongly consistent within a colo

o Eventually consistent across colos

Multi-Colo Challenges

e Topology

Multi-Colo Challenges
e Topology
o Gets heavier as the number of colos increase

o Solution: Kafka

Multi-Colo using Kafka

Applications

A4
A

Kafka

Colo 2 Applications
F____J

|

|

|

L

Multi-Colo using Kafka

HTTP
PUT/POST

-

\/
API Server

INSERT..UPDATE

‘ Kafka L:cmc;urerl

Storage Node

Open Replicator

Kafka Producer

Storage Node

API Server

< binlog
|
binlog
MySQL event
saL
INSERT..UPDATE

Open Replicator)

Kafka Consumer

afka Producer J

A

— Kafka Message T

KefkaPartiion [| | [[| [[[][]

Kafka M ge

Kafka Requirements
Highly Available
No Data loss
No reordering

Apply changes exactly once

Kaftka Config

Kafka Config - Broker
e replication factor =3

e min.isr =2 (in sync replicas = 2)

e No unclean leader election

Kafka Config - Producer

e No data loss
o block.on.buffer.full = TRUE
o refries = Long.MAX_VALUE
o qacks = all
e Noreordering
o max.in.flight.requests.per.connection = 1
o linger.ms =0 (Deliver messages as soon as they are
received, do not wait for batch)
e On on send failure
o close producer in callback with close(0)
o creqate new producer
o resume from last checkpoint

Kafka Config - Consumer

e Exactly once
o qauto.offset.commit =0
o commit offsets only after the messages are processed
o Do not process older GTIDs

Multi-Colo Challenges

o Conflicts

Multi-Colo Challenges - Conflicts
e Primary Key Collisions

Multi-Colo Challenges - Conflicts

e Simultaneous Inserts/Updates in multiple colos

COLO 1 COLO 2
t1: PK=1;a=100 t1: PK=1;a=100
t2: UPDATE table SET a=200 WHERE PK=1 t2: PK=1;a=100
t3: PK=1;a =200 %43: UPDATE table SET a=300 WHERE PK=1
t4:PK=1;a=300/ “t4: PK = 1; a = 200
t5: PK =1;a =300 t5: PK=1;a =200

Multi-Colo Challenges - Conflicts

e Row Rebirth - Delete arecord in one colo

and replace in another colo

COLO 1

t1:a=100
t2: DELETE FROM table WHERE a=100+_|
t3: =466
t4:a =100

t5:a=100

COLO 2

<

t1:a=100

_t2: REPLACE INTO table(a) VALUES(100)
t3:a =100

‘4. a=406

t5: a=40606

How to handle Collisions

e Primary Key Collisions

©)

©)

Global Key generator Service

Auto increment with colo name as prefix

al, a2, a3, a4... (for colo a)
b1, b2, b3, b4...(for colo b)

Auto increment with offsets
5n, 5n+1, 5n+2, 5n+3, 5n+4 (if 5 colos are there)

UuID

How to handle Collisions
e Conflicts Resolution Mechanisms
o Last writer win (Max value of a timestamp column)
o First writer win (Min value of a fimestamp column)

o Delta (Append to existing value)

Multi-Colo Implementation

Applications

Traditional Replication

MySQL

Y

Binlogs

IO Thread

MySQL

A

SQL Thread

| Relay
Logs

Not intelligent

Blindly applies ROW
changes

slave_exec_mode
has only idempotent

Multi-Colo Implementation

Applications

|
!

Open Replicator

Y

Kafka Producer

Intelligent
Converts
ROW events
to
Statements

Kafka

Y

Applications

Applier

A

Y

Kafka Consumer

Applier Mechanism
Converts ROW event to STATEMENT
Behaves as an application and writes to the database
Handles failures based on the desired conflict resolution
Update - “Row already exists”
o Last written wins

Insert Failure - “Row already exists”
o Converts Insert to Update and applies based on last writer
win
Update Failure - Y“Row does not exist”

o Converts Update into Insert

Multi-Colo Schema Requirements

e Additional Columns on each table

o Last modified column

o Status
e Triggers on each table

o Before Insert

o Before Update
e ROW Image FULL

Multi-Colo Schema Requirements

/* Multi-colo columns */
mulit_colo_ts DATETIME DEFAULT CURRENT _TIMESTAMP,
multi_colo_status VARCHAR(1) DEFAULT 'A’,

Multi-Colo Schema Requirements

/* Multi-colo Triggers Before Insert */
DROP TRIGGER IF EXISTS <database_name>.<table_name>_MULTI_COLO_BEFORE_INSERT;
DELIMITER //
CREATE TRIGGER <database_name>.<table_name>_MULTI_COLO_BEFORE_INSERT
BEFORE INSERT
ON <database_name>.<table_name>
FOR EACH ROW
BEGIN
IF user() LIKE 'multi_colo_user@localhost' THEN
SET new.multi_colo_status :='M";
ELSE
--:new comes from an application write
SET new.multi_colo_status :="A";
SET new.mulfi_colo_ts = NOW|(é); -- micro seconds
END IF;
END //

Multi-Colo Challenges - Conflicts

e Simultaneous Inserts/Updates in multiple colos

COLO 1 COLO 2
t1: PK=1; a=100; multi_colo_ts =10 t1: PK=1; a=100; multi_colo_ts =10
12: UPDATE table SET a=200 WHERE PK=1 12: PK=1; a =100; multi_colo_ts =10

(Trigger sets multi_colo_ts to 12)
L 13: UPDATE table SET a=300 WHERE PK=1

t3: PK = 1; a = 200; multi_colo_ts = 12 (Trigger sets multi_colo_ts to t3)

t4: PK = 1; a = 300; multi_colo_ts = 13 / “t4: PK = 1; a = 300; multi_colo_ts = 13
(APPLIES since 13 > t2) (IGNORES since t3 > 12)

t5: PK = 1; a = 300; multi_colo_ts = 13 t5: PK = 1; a = 300; multi_colo_ts = 13

e Aft3, colol and colo2 are inconsistent

e At 15, they are eventually consistent

Multi-Colo Challenges - Conflicts
e Application Guidelines to avoid conflicts
o All tables should have PK
o No update on PK
o No Unigue Key
o No hard deletes (Row-rebirth)

o No Foreign Key

Future Database Needs

Problems with current architecture
e Can'tleverage Multi-Threaded-Replication

e Overhead to resolve conflicts

Why Clustering does not solve the problem?

e Synchronous

e Adds latency because of certfification process

Future Database Needs

e Provide mechanisms to resolve conflicts automatically

o [etc/my.cnf

default_conflict_resolution ‘last_writer_win’

conflict_resolution_table = “"company.emp=first_writer_win"
conflict_resolution_table = “"company.emp=first_writer_win"
conflict_resolution_ts_column = ‘multi_colo_ts’

conflict_resolution_status_column = ‘multi_colo_status’

CREATE TABLE "emp’ (
“id™ int unsigned NOT NULL,
‘name’ varchar(15) NOT NULL,
“sal’ int unsigned NOT NULL,
‘multi_colo_status™ enum(‘A’, ‘M),
“multi_colo_ts” TMESTAMP DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY ('id")
) ENGINE=InnoDB;

Future Database Needs

e Clustering solutions could have options to

©)

©)

APP

Disable certification

Choose consistency

INSERT, ASYNC

DELETE, SYNC

APP

Thank You!

Q & A

