

Multi-colo Async Replication
at LinkedIn

 Karthik Appigatla
Staff SRE, LinkedIn

About Me
● Over a decade of experience in databases.

● Working for LinkedIn for last 5 years

● Authored MySQL 8 Cookbook
https://www.amazon.in/MySQL-8-Cookbook-Karthik-Appigatla-ebook/dp/B0753D434Q

● LinkedIn - https://www.linkedin.com/in/appigatla

https://www.amazon.in/MySQL-8-Cookbook-Karthik-Appigatla-ebook/dp/B0753D434Q
https://www.linkedin.com/in/appigatla

Data Center
a.k.a Colocation
Center
a.k.a Colo

LinkedIn’s newest data center in Oregon

https://engineering.linkedin.com/blog/2016/11/linkedin_s-oregon-data-center-goes-live

Agenda
● Need for Multi-colo

● How we leverage Multi-colo

● Managing Multi-colo Topology through Kafka

● Conflicts in Multi-colo

● Future Database Needs

● Q&A

Need for Multi-colo

Latency numbers everyone should know

Source: https://colin-scott.github.io/personal_website/research/interactive_latency.htmlSource: https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

Limited by Speed of Light

Assuming best possible case

Aerial Distance between CA and Netherlands ~ 9000 Kilometers

Speed of light ~ 300000 Kilometers/second

Light takes 9000/300000 ~ 30 milliseconds to travel from CA to Netherlands

Best possible case ~ 60 milliseconds (Round Trip)

Still 60ms/0.5ms = 120 times slower than reading from same data center

Light does not travel in absolute straight line inside a
fibre optic cable, instead it bounces off the claddings.

How bad is it to read from remote colo
Round trip within same datacenter 500,000 ns = 0.5 ms
Send packet CA->Netherlands->CA 150,000,000 ns = 150 ms

Reading from remote colo is 150ms/0.5ms = 300 times slower than
reading from same colo

Read 1 MB sequentially from memory 825,000 ns = 825 µs
Read 1 MB sequentially from disk 3,000 ns = 3 µs

Reading from magnetic disk is 825µs/3µs = 275 times slower than
reading from main memory

~
Performance impact of
reading from magnetic disk
rather than memory

Performance impact of
reading from cross-colo
which is 9000 KMs away

https://azure.microsoft.com/en-us/global-infrastructure/geographies/

Multi-Colo

https://azure.microsoft.com/en-us/global-infrastructure/geographies/

https://azure.microsoft.com/en-us/global-infrastructure/geographies/

Multi-Colo

https://azure.microsoft.com/en-us/global-infrastructure/geographies/

How to leverage Multi-colo

Multi-Colo Advantages
● Low latency reads and writes across

all geographic locations

● High Availability across regions

● Easy failover across regions

LinkedIn’s EDGE

Point of Presence (PoP)

Sticky Routing Service

 Public
Internet

COLO 1

COLO 2

Dedicated
Network

Multi-Colo Challenges
● Consistency

● Topology

● Conflicts

Multi-Colo Challenges
● Consistency

○ Strongly consistent within a colo

○ Eventually consistent across colos

Multi-Colo Challenges
● Consistency

● Topology

● Conflicts

Multi-Colo Challenges
● Topology

○ Gets heavier as the number of colos increase

○ Solution: Kafka

Kafka

Multi-Colo using Kafka

Multi-Colo using Kafka

● Highly Available

● No Data loss

● No reordering

● Apply changes exactly once

Kafka Requirements

Kafka Config

● replication factor = 3

● min.isr = 2 (in sync replicas = 2)

● No unclean leader election

Kafka Config - Broker

Kafka Config - Producer
● No data loss

○ block.on.buffer.full = TRUE
○ retries = Long.MAX_VALUE
○ acks = all

● No reordering
○ max.in.flight.requests.per.connection = 1
○ linger.ms = 0 (Deliver messages as soon as they are

received, do not wait for batch)
● On on send failure

○ close producer in callback with close(0)
○ create new producer
○ resume from last checkpoint

● Exactly once
○ auto.offset.commit = 0
○ commit offsets only after the messages are processed
○ Do not process older GTIDs

Kafka Config - Consumer

Multi-Colo Challenges
● Consistency

● Topology

● Conflicts

Multi-Colo Challenges - Conflicts
● Primary Key Collisions

Multi-Colo Challenges - Conflicts
● Simultaneous Inserts/Updates in multiple colos

t1: PK = 1; a = 100

t2: UPDATE table SET a=200 WHERE PK=1

t3: PK = 1; a = 200

t4: PK = 1; a = 300

t5: PK = 1; a = 300

COLO 1 COLO 2
t1: PK = 1; a = 100

t2: PK = 1; a = 100

t3: UPDATE table SET a=300 WHERE PK=1

t4: PK = 1; a = 200

t5: PK = 1; a = 200

Multi-Colo Challenges - Conflicts
● Row Rebirth - Delete a record in one colo

and replace in another colo

t1: a = 100

t2: DELETE FROM table WHERE a=100

t3: a = 100

t4: a = 100

t5: a = 100

COLO 1 COLO 2

t1: a = 100

t2: REPLACE INTO table(a) VALUES(100)

t3: a = 100

t4: a = 100

t5: a = 100

● Primary Key Collisions
○ Global Key generator Service

○ Auto increment with colo name as prefix
a1, a2, a3, a4... (for colo a)

b1, b2, b3, b4...(for colo b)

○ Auto increment with offsets
5n, 5n+1, 5n+2, 5n+3, 5n+4 (if 5 colos are there)

○ UUID

How to handle Collisions

How to handle Collisions
● Conflicts Resolution Mechanisms

○ Last writer win (Max value of a timestamp column)

○ First writer win (Min value of a timestamp column)

○ Delta (Append to existing value)

 Multi-Colo Implementation

Traditional Replication

Relay
Logs

MySQL

Binlogs IO Thread

MySQL

SQL Thread

Applications

Not intelligent

Blindly applies ROW
changes

slave_exec_mode
has only idempotent

 Multi-Colo Implementation

MySQL

Binlogs

Applications

Open Replicator

Kafka Producer KafkaKafka Consumer

Applier

MySQL

Binlogs

Open Replicator

Kafka ProducerKafka Consumer

Applier

Applications

Intelligent
Converts
ROW events
to
Statements

● Converts ROW event to STATEMENT

● Behaves as an application and writes to the database

● Handles failures based on the desired conflict resolution

● Update - “Row already exists”

○ Last written wins

● Insert Failure - “Row already exists”
○ Converts Insert to Update and applies based on last writer

win

● Update Failure - “Row does not exist”
○ Converts Update into Insert

Applier Mechanism

● Additional Columns on each table

○ Last modified column

○ Status

● Triggers on each table

○ Before Insert

○ Before Update

● ROW Image FULL

Multi-Colo Schema Requirements

Multi-Colo Schema Requirements
/* Multi-colo columns */

 mulit_colo_ts DATETIME DEFAULT CURRENT_TIMESTAMP,

 multi_colo_status VARCHAR(1) DEFAULT 'A',

Multi-Colo Schema Requirements
/* Multi-colo Triggers Before Insert */

DROP TRIGGER IF EXISTS <database_name>.<table_name>_MULTI_COLO_BEFORE_INSERT;

DELIMITER //

CREATE TRIGGER <database_name>.<table_name>_MULTI_COLO_BEFORE_INSERT

 BEFORE INSERT

 ON <database_name>.<table_name>

 FOR EACH ROW

BEGIN

 IF user() LIKE 'multi_colo_user@localhost' THEN

 SET new.multi_colo_status := 'M';

 ELSE

 -- :new comes from an application write

 SET new.multi_colo_status := 'A';

 SET new.multi_colo_ts = NOW(6); -- micro seconds

 END IF;

END //

Multi-Colo Challenges - Conflicts
● Simultaneous Inserts/Updates in multiple colos

t1: PK = 1; a = 100; multi_colo_ts = t0

t2: UPDATE table SET a=200 WHERE PK=1
(Trigger sets multi_colo_ts to t2)

t3: PK = 1; a = 200; multi_colo_ts = t2

t4: PK = 1; a = 300; multi_colo_ts = t3
(APPLIES since t3 > t2)

t5: PK = 1; a = 300; multi_colo_ts = t3

COLO 1 COLO 2
t1: PK = 1; a = 100; multi_colo_ts = t0

t2: PK = 1; a = 100; multi_colo_ts = t0

t3: UPDATE table SET a=300 WHERE PK=1
(Trigger sets multi_colo_ts to t3)

t4: PK = 1; a = 300; multi_colo_ts = t3
(IGNORES since t3 > t2)

t5: PK = 1; a = 300; multi_colo_ts = t3

● At t3, colo1 and colo2 are inconsistent

● At t5, they are eventually consistent

Multi-Colo Challenges - Conflicts
● Application Guidelines to avoid conflicts

○ All tables should have PK

○ No update on PK

○ No Unique Key

○ No hard deletes (Row-rebirth)

○ No Foreign Key

Future Database Needs

● Can’t leverage Multi-Threaded-Replication

● Overhead to resolve conflicts

Problems with current architecture

● Synchronous

● Adds latency because of certification process

Why Clustering does not solve the problem?

● Provide mechanisms to resolve conflicts automatically
○ /etc/my.cnf

default_conflict_resolution = ‘last_writer_win’

conflict_resolution_table = “company.emp=first_writer_win”

conflict_resolution_table = “company.emp=first_writer_win”

conflict_resolution_ts_column = ‘multi_colo_ts’

conflict_resolution_status_column = ‘multi_colo_status’

CREATE TABLE `emp` (

 `id` int unsigned NOT NULL,

 `name` varchar(15) NOT NULL,

 `sal` int unsigned NOT NULL,

 `multi_colo_status` enum(‘A’, ‘M’),

 `multi_colo_ts` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB;

Future Database Needs

● Clustering solutions could have options to
○ Disable certification

○ Choose consistency

Future Database Needs

COLO 1APP
INSERT, ASYNC DELETE, SYNC

MySQL
Cluster

COLO 2

COLO 3

APP

Thank You!

Q & A

