
Organize the migration
of a hundred databases
to the cloud
Percona Live ONLINE
May 12th 2021

Maxime Fouilleul
Engineering Manager for DBRE

Meet

“Make the database not a
problem.”

Package and support
the database catalog
for BlaBlaCar
application services.

Provide expertise in
software engineering to
help teams choose the
right database for them
and to ensure they use
it the right way.

BUILD ADVISE

Geographies Global (22 countries) Russia, Ukraine, Poland, Brazil France, Germany

Position Leader in all our markets Leader in Eastern Europe
Early stage in Brazil Leader in France

Carpool BBC Branded BusesBus Marketplace

The go-to marketplace for shared road travel

BlaBlaCar is a community-based marketplace allowing members to book seats in individual
cars and buses alike. From carpool to buses, we have one common moto: #ZeroEmptySeats.

90 million
members

“The go-to
marketplace for
shared travel”

BlaBlaCar

90 million
members

bare-metal servers 1 type of
hardware

3 disk profiles

fleet

CoreOS

ggn“Distributed init system”

Hardware

Container Registry

etcd

dgr

Service Codebase

rkt PODs

build

run

store

host

create mysqld

monitoring

nerve

mysql-main1

php

nginx

nerve

monitoring

synapse

front1

synapse

nerve

zookeeper Service Discovery

20
18

100% Containers Powered Carpooling

PostgreSQL
5 Production Clusters

MySQL
30 Production Clusters

Elasticsearch
6 Production Clusters

Cassandra
7 Production Clusters

Couchbase
5 Production Clusters

Redis
19 Production Clusters

RabbitMQ
13 Production Clusters

Kafka
8 Production Clusters

Our production database infra in 2019

2019
sign cloud provider

end of 2020
close on-premise

The mission

Consolidate the DBRE team
staffing plan includes 4 SRE database enthusiastic

Migrate 100+ databases
Package reliable systems, accompany the

migration and decommissioning

The dream team
Database Reliability Engineering (DBRE)

SRE
Distributed Databases

Engineering
Manager

SRE
Cloud & Kubernetes

SRE
Databases

Product Owner

SRE
Kafka

“Fly me to the cloud”

The DBRE vision

Google Kubernetes
Engine

Google Managed
Services

GCP MarketplaceGoogle Compute
Engine

The DBRE vision

Google Kubernetes
Engine

Google Managed
Services

GCP MarketplaceGoogle Compute
Engine
Try to avoid

The DBRE vision

Google Kubernetes
Engine
Prefer

Google Managed
Services

GCP MarketplaceGoogle Compute
Engine
Try to avoid

The DBRE vision

Google Kubernetes
Engine
Prefer

Google Managed
Services
Do

GCP MarketplaceGoogle Compute
Engine
Try to avoid

The DBRE vision

Google Kubernetes
Engine
Prefer

Google Managed
Services
Do

GCP Marketplace

Don’t

Google Compute
Engine
Try to avoid

“Be transparent to ensure buy-in”

GA
Ready to

prod

𝛽eta
Ready to
industrialize

𝛼lpha
Ready to
test

Be clear on iterations

Documentation as log

Runbooks

How do I? What to do
when?

Gamify the knowledge sharing process

Level 1
Actions are basic tasks that

should be mastered by each
team member.

Level “Owner”
Actions allow the component
to be actively supported, they
should be mastered by at
least 2 members.

Implementations
and migration paths

Oct 2019 Apr Jul Oct 2020 Apr Jul Oct 20212018 2021

MariaDB Oct
Cassandra Apr

Elasticsearch Feb
PostgreSQL May

Kafka Dec
Redis Jun

RabbitMQ Oct
MariaDB May

Elasticsearch Oct
Kafka Mar

RabbitMQ Nov
Cassandra Jul

CloudSQL Jun
MemoryStore Aug

Cassandra Jan
RabbitMQ Jan

Redis May
Kafka Oct

Elasticsearch Feb
PostgreSQL Sept

MariaDB Jan

Kickoff of the 𝛼lpha release

First production cluster in GCP

Last production cluster decomissioned from on-premise

Key elements for the implementations

● Leverage Kubernetes Statefulset

● master affinity in the PodSpec

● prefer Google Persistent disks over Local SSD

● leverage Persistent disk Snapshots

● promote distributed ownership

● use Terraform for Google managed services

MySQL

A production MySQL service in 2019

MariaDB Galera Cluster

Async Async

READS

WRITES

ASYNC
 READS

HA
Pr

ox
y

APP

Gather requierements

● Will your database be migrated or abandoned?

● What is the tolerated downtime for the migration?

● Can we migrate the reads separately from the writes?

1. The application can
tolerate several minutes of
downtime

2. Writes can be stopped
during the dataset
migration

3. The need is fairly
lightweight

Google CloudSQL

MariaDB in Kubernetes

What DBRE is packaging for CloudSQL?

Terraform
Module

To ease and
standardize the

usages

Kubernetes
Operator
To setup a
Prometheus
exporter

What DBRE is packaging for CloudSQL?

CloudSQL Migration Path
Initial stage

READS

WRITES HA
Pr

ox
y

APP

on-premise

CloudSQL Migration Path
Move the application

WRITES &
READSAPP

on-premise

Service
(ClusterIP)

Endpoint

HA
Pr

ox
y

CloudSQL Migration Path
Stop the application and switch endpoint

WRITES &
READSAPP

Service
(ClusterIP)

Endpoint

HA
Pr

ox
y

on-premise

CloudSQL Migration Path
Copy dataset

dump.sql

WRITES &
READSAPP

Service
(ClusterIP)

Endpoint

HA
Pr

ox
y

on-premise

CloudSQL Migration Path
Restart the application

HA
Pr

ox
y

on-premise

WRITES &
READSAPP

Service
(ClusterIP)

Endpoint

● A StatefulSet with Galera enabled...or not

● A Deployment running ProxySQL

● Prometheus exporter sidecars to export metrics

● A bunch of Jobs that manipulate disk snapshots

● A Deployment running an SLI Prober

● Services, RBAC, and PDB...

MariaDB in-house packaging via a Helm Chart

A production MySQL service in 2021

With asynchronous replicas

MariaDB packaging tips

Dynamically find Galera seeds
wsrep_cluster_address

We use a Kubernetes Headless Service to get
available (ready) endpoints

If we find endpoints we join a cluster

If we don’t find any endpoint we bootstrap a cluster

Having accurate Liveness and Readiness

Simple ping to report the MySQL is live or not

Prevent killing a node doing an SST (Galera full resync)

Only nodes Synced and Donor are considered “ready”

Having fun with the Persistent disk Snapshots
MariaDB Snapshot Validator

To ensure we can restore
backups

Daily Copy
To expose fresh
dataset for BI Joes

On-demand copy
Restore a backup in a

minute

Extend a Galera Clusters
Avoid SST

Having a SLI Prober to implement SLO

SLI Prober
(Pod)

Monitoring Stack

MariaDB migration path

MariaDB Migration Path
Initial stage

MariaDB Migration Path
Move the application

MariaDB Migration Path
Setup the database in GCP (with replication)

on-premise

WRITES

READS

Service
(ClusterIP)

Service
(ClusterIP)

ProxySQL

APP

Asynchronous Replication

read-only

MariaDB Migration Path
Open a Beta endpoint for reads

on-premise

WRITES

READS

Service
(ClusterIP)

Service
(ClusterIP)

ProxySQL

BETA
READS

Service
(ClusterIP)

APP

Asynchronous Replication

read-only

MariaDB Migration Path
D-Day: Set read-only

on-premise

WRITES

READS

Service
(ClusterIP)

Service
(ClusterIP)

ProxySQL

BETA
READS

Service
(ClusterIP)

APP

read-only

read-only
1

Asynchronous Replication

MariaDB Migration Path
D-Day: Reverse the replication stream

on-premise

WRITES

READS

Service
(ClusterIP)

Service
(ClusterIP)

ProxySQL

BETA
READS

Service
(ClusterIP)

APP

Asynchronous Replication

read-only

read-only
1

2

MariaDB Migration Path
D-Day: Enable writes in GCP

on-premise

WRITES

READS

Service
(ClusterIP)

Service
(ClusterIP)

ProxySQL

BETA
READS

Service
(ClusterIP)

APP

Asynchronous Replication

read-only

read-only
1

3

2

MariaDB Migration Path
D-Day: Change the endpoints

on-premise

WRITES

READS

Service
(ClusterIP)

Service
(ClusterIP)

ProxySQL

BETA
READS

Service
(ClusterIP)

APP

Asynchronous Replication

read-only

read-only
1

3

2

4

MariaDB Migration Path
Cleaning and decommissioning

WRITES

READS

Service
(ClusterIP)

Service
(ClusterIP)

ProxySQL

BETA
READS

Service
(ClusterIP)

APP

on-premise

Asynchronous Replication

Elasticsearch

ELASTIC CLOUD ON KUBERNETES

Elasticsearch Migration Path
Implement double-writes in indexer

SEARCH

HA
Pr

ox
yAPP

on-premise

INDEXINDEXER HA
Pr

ox
y

on-premise

Elasticsearch Migration Path
Get missing data from on-premise

SEARCH

HA
Pr

ox
yAPP

on-premise

INDEXINDEXER HA
Pr

ox
y

on-premise

POST /_reindex
(with op_type: create)

Elasticsearch Migration Path
Move the application

APP

on-premise

INDEXER

APP INDEXER

SEARCH INDEX

HA
Pr

ox
y

That’s only two use cases...

RabbitMQ

PostgreSQL

Cassandra

Couchbase

Redis

Kafka

Solutions chosen in GCP

Helm Chart
Bitnami

CloudSQL

Helm Chart
BlaBlaCar

MemoryStore

K8S Operator
Strimzi

MemoryStore

#ZeroEmptySeats

