
1

Pandemic !
A tale of 25x

growth

2

Hello!
I am Miklos “Mukka” Szel
Senior MySQL Architect @ Edmodo

miklos.szel@edmodo.com

3

Hello!
I am Natarajan Chidhambharam (Nat)
Infrastructure engineer (Database) @ Edmodo

nat@edmodo.com

4

 Edmodo
● Edmodo is a global education network that

- gives teachers the tools to share engaging lessons,
- keeps parents updated,
- builds a vibrant classroom community.

● Founded in 2008.
● Edmodo has more than 140 million users.
● edmodo

5

https://edmodo.com

Infrastructure setup @ Edmodo

● Hosted on AWS.
● DB - Percona Server with async replication.
● 200.000 Queries Per Second peak (Back to school period)
● 13 MySQL clusters and 34 MySQL EC2 instances (13 Primaries, 21

replicas)

● App servers (Dockerized) in AWS Auto Scaling Groups

6

“We've seen a significant increase in
usage this week. [..] At a guess, this is

probably due to closures and
restrictions imposed due to the

ongoing viral outbreak in the world.

Chris Dunn (Director of data/ops/sec)

7

8

Growth - traffic in March 2020

8

 Before March 2020

● DAU - 1.1 million
● 250M req/ day
● Peak - 216K req/min
● DB Peak - 200K QPS

This required a 15x increase in capacity!

End of March 2020

● DAU - 4.6 million
● 2.5B req/ day
● Peak - 3M req/min
● DB Peak - 5M QPS

DAU in year 2020

9

Beginning - DB Monitoring
● On premise monitoring

- Percona Monitoring and Management 2.x
- Nagios

● VividCortex
● pt-stalk
● AWS cloudwatch

10

Beginning - Config Management
● Ansible

○ Dynamic inventory based on ec2 tags
○ Security and OS tuning
○ ec2/ebs deployment and config
○ MySQL, user/replication setup
○ Restore from different sources (s3 object, xtrabackup stream from a donor machine)
○ PMM/nagios/pt-stalk setup
○ Slack Notification

Traffic is skyrocketing !

What did we do about it ?

11

12

Scaling for reads
● Started adding new readers on a daily basis
● Deployment with Ansible, warmup manually
● This helped for a couple of days

13

Connection pooling
● Backend is written in Ruby On Rails
● It overwrites the default wait_timeout

SET NAMES utf8mb4, @@SESSION.sql_auto_is_null = 0, @@SESSION.wait_timeout = 2147483,
@@SESSION.sql_mode = 'STRICT_ALL_TABLES';

● Increase max_connections on all clusters
● Periodically killing the connections where WHERE command =

'Sleep' and time >600

14

Connection pooling - contd.
● At around 2 million QPS increasing the max_connection is not an option

anymore
● Source servers start crashing
● Adding ProxySQL a little before the last moment

15

Setup

16

Config management
● Support for deploying ProxySQL and ProxyWeb
● Added several tweaks to our Ansible playbook

○ We backup the buffer pool and restore it during deployment
● Machines are fully production ready if the deployment is successful (buffer is

warm, no replication lag)
● Restore from s3 objects (start as many readers as we want)
● Restore/warm up time for a 2TB instance is between 3-4 hours

17

ProxyWeb
● Our recently open sourced internal tool to visualize ProxySQL

18

Query tuning
● Queries doing otherwise OK started misbehaving

○ Growing traffic
○ Nature of the traffic
○ Table growth
○ Uneven distribution of data
○ Attacks - we started getting more attention

● New - not so well tested - queries due to new feature rollout!
● The (in)famous OPS-7082 ticket with 45 optimization related subtasks

19

Query tuning - indexing
● The readers’ resource usage has been reduced by ~10% by fixing indices.

20

Query tuning - caching
● ProxySQL helps removing connector generated commands like com_ping
● Cached frequent and aggregating queries in the memcached or with

ProxySQL
● Stopped running billions of queries this way, mostly aggregating ones
● Traced back 16% of all writes on the most important cluster to a single query:

○ Decreased the frequency of the UPDATE on the frontend by 6x

21

Query tuning - rerouting
● Offloads select from the writers to the readers - ProxySQL
● Added actual readers to some previously `1 leg` clusters (1 writer-1 failover)
● In case of the backend, offloaded 70% of the reads to the readers
● Did the same for all clusters watching the effect, made scaling for writes

possible

22

Query tuning - rewriting
● Devs worked on application logic changes to:

○ Optimize queries
○ Remove unnecessary code paths
○ Optimize cronjobs started causing issues due to the high concurrency

● Used ProxySQL to rewrite some problematic queries

23

Scaling for writes - split
● Traffic breakdown with ProxySQL’s stats_mysql_query_digest
● Moved the most heavily written dbs to their separate clusters using:

○ ProxySQL
○ Chain replication

24

Replication redesign
● Using bigger instances in order to:

○ Avoid network saturation
○ More RAM - hot data fits - less IO
○ Less gp2 disk needed

● Scaled up to 70 replicas then we moved to 3 tier replication (Ansible, MHA,
Nagios changes)

● Adjusting the disks’ size on the instances online(EBS) or during the deployment

Final DB flow

25

Miscellaneous
● Upgraded the HW under PMM several times, then added a new instance
● Prepared for handling 6x more traffic by mid April
● 450 db servers

○ 200 r5.8xlarge in the biggest cluster, 3 tier replication
● Used more than 1PB gp2 disk at the end
● Keeping the traffic within the zones for reads
● Reduced the ProxySQL CPU usage by 90% with running it with --idle-threads
● Reduced the threads_connected even further with fine tuning

mysql_auto_increment_delay_multiplex

26

Current status

● Tens of millions of new users
● New site for a country in a new DC to support the remote learning of 20

million students
● Traffic on the Global site is still 5x of what it used to be

27

● https://www.linkedin.com/in/natarajanct/
● nat@edmodo.com

● https://linkedin.com/in/miklos.szel
● miklos.szel@edmodo.com

28

Thanks!
You can find us at:

https://www.linkedin.com/in/natarajanct/
mailto:nat@edmodo.com
https://linkedin.com/in/miklos.szel
mailto:miklos.szel@edmodo.com

29

