Revertible, recoverable
schema migrations in Vitess

Shlomi Noach
PlanetScale

Perconalive 2021

About me

Engineer at PlanetScale

Author of open source projects orchestrator, gh-ost,
freno and others

Maintainer for Vitess
Blog at http://openark.org

github.com/shlomi-noach
@ShlomiNoach

http://code.openark.org/
https://github.com/shlomi-noach
https://twitter.com/ShlomiNoach

¢/f planetscale

Founded Feb. 2018 by co-creators of Vitess
~50 employees

HO Mountain View, remote team

Vitess

A database clustering system for horizontal scaling of
MySOL

e CNCF graduated project
e (Opensource, Apache 2.0 licence
e (ontributors from around the community

Agenda

- Recap: proxy/tablet architecture

- Recap: Online DDL in Vitess

- Introducing VReplication

- Revertible, lossless schema changes
- Recoverable, resumable migrations

- Declarative schema changes (*)
(*) Bonus, hot off the git repo

Vitess architecture brief basics

Focus on VTTablet

Vitess architecture basics

Consider a common replication cluster

.
.
.
B
.
.
.
.

@@

.
.
B
.
.
.

B

Vitess architecture basics

Each MySOQL server is assigned a vttablet

A daemon/sidecar

Controls the mysqld process
Interacts with the mysqld server
Typically on same host as mysqld

VTTablet

- On primary, creates _vt schema on backend MySQL
- Manages state of some operations on _vt tables
- vt schema datareplicated as normal

.
.
B
.
.
.

B

Vitess architecture basics

In production you have multiple clusters

S
DEE HEE R

D

Vitess architecture basics

User and application traffic is routed via
vitgate

- A smart, stateless proxy

- Speaks the MySQL protocol

- Impersonates as a monolith MySQL
server

- Relays queries to vttablets

PR AS

Vitess architecture basics O

A vitess deployment will run multiple
vtgate servers for scale out

Vitess architecture basics

vtgate must transparently route queries

to correct clusters, to relevant shards

PR AS

commerce
shard O

commerce
shard 1

internal
unsharded

Vitess architecture basics

Queries route based on schema & sharding scheme

- W
"""""" ’O"ﬁﬁ shard 1
! ‘”E;“ua:”. --------- f;:fﬁg
i P
' B
(P

........

internal
unsharded

EUSE commerce ; :
. SELECT order_id, price |
i FROM orders ;

WHERE customer_id=4; |

Vitess architecture basics

topo: distributed key/value store

- Stores the state of vitess: schemas,
shards, sharding scheme, tablets,
roles, etc.

- etcd/consul/zookeeper

- Small dataset, mostly cached by
vigate

PR AS

commerce
shard O

commerce
shard 1

internal
unsharded

Recap: Online DDL

Vitess supports online schema migrations natively
Previously presented:

- Native support for gh-ost
- Native support for pt-online-schema-change

mysql> SET @@ddl_strategy='gh-ost’;
mysql> ALTER TABLE my_table ADD COLUMN my_col INT NOT NULL;

https://www.youtube.com/watch?v=i0YZ0dRe708
https://fosdem.ora/2021/schedule/event/vitess/

https://www.youtube.com/watch?v=iQYZ0dRe7O8
https://fosdem.org/2021/schedule/event/vitess/
https://vitess.io/docs/reference/vreplication/vreplication/

Recap: Online DDL

Automatically:

Send DDL to appropriate shards
Schedule migration

Create & destroy migration account
Run gh-ost/pt-online-schema-change
Throttle

Garbage-collect artifact tables

VReplication

A distributed flow in Vitess, that can:

- Move data from “here” to “there”
- Mutate the data on the fly
- Live

https://vitess.io/docs/reference/vreplication/vreplication/

https://vitess.io/docs/reference/vreplication/vreplication/

VReplication use cases

VReplication runs the following core Vitess
functionalities:

- Liveresharding
- Materialized views
- Import from external data sources(e.g. Aurora)

- Moving tables across clusters
- With VTGate rerouting traffic to new location

VReplication

- A flow(workflow) can have 1or more streams

- Each stream connects one source tablet (thereby a
source MySQL server)with one target (a target
MySOQL server)

- There can be many-to-many streams, eq.. in a
resharding scenario

https://vitess.io/docs/reference/vreplication/vreplication/

https://vitess.io/docs/reference/vreplication/vreplication/

VReplication: MoveTables

Example: move large messages table out =

c c : lith
of a crowded monolith cluster into a @@ o
dedicated sharded schema A =

o o R
- Move traffic SERITT

commerce
shard O

commerce
shard 1

VReplication: MoveTables

Moving data:

monolith

. unsharded

- Assume table exists on target
schema/clusters

- |terate existing table in monolith
cluster, a bunch of rows at a time

- Insert/apply each bunch of rows
onto commerce keyspace

- Tailmonolith binary logs and apply

ongoing changes to messages table

commerce
shard O

commerce
shard 1

VReplication: MoveTables

Moving traffic (manual):

User issues SwitchReads

Vitess updates topo with new
routing rules

VTGate notified about topo changes
VTGate routes all read traffic on
messages to commerce
schema/clusters

monolith
unsharded

commerce
shard O

commerce
shard 1

VReplication: MoveTables

Moving traffic (manual):

User issues SwitchWrites

Vitess updates topo with new
routing rules

VTGate notified about topo changes
VTGate routes all write traffic on
messages to commerce keyspace
Client can later explicitly query
messages on commerce schema
rather than monolith schema

monolith
unsharded

commerce
shard O

commerce
shard 1

VReplication: MoveTables

Reverse replication:

- |tis possible to stream messages
changes back from commerce to
monolith

- Gives the app a path for failback

monolith
unsharded

commerce
shard O

commerce
shard 1

VReplication for Online DDL

Same essentials as MoveTables, but: P
%. monolith
unsharded
- Source and target schemasarethe 7 e
same. B
- Automatic creation of target table in O ----- @@
new schema R =
- Automatic analysis of schema and l Tl =
: . 2 S
filter query St BB
- Automatic cut-over 5

- Instead of SwitchWrites we switch
tables

VReplication Online DDL

Looks just like a gh-ost or pt-osc online DDL:

mysql> SET @@ddl_strategy='online’;
mysql> ALTER TABLE my_table ADD COLUMN my_col INT NOT NULL;

Added value:

- Internal to vitess, unified logic for moving data
around
- Super powers, courtesy VReplication's logic

Revertible Online DDL

- Run a schema migration.
- Cut-over. Wait. What. This. Is. Wrong.
- Revert the migration. Lossless.

Revertible Online DDL

DEMO

2

Revertible Online DDL: how?

- VReplication uses two underlying tables:

- _vt.vreplication

- General purpose information

- Filter/rule query

- GTID pos

- Updates in same commit with binlog event changes
- _vt.copy_state

- Row-copy information

- Last known row copy range

- Empty on startup, empty on completion

- Updates in same commit with row copy

- These two tables formulate the state of a
VReplication stream

Revertible Online DDL: how?

During “normal” ALTER TABLE.:

- Oncut-over, disable writes on original table
- Consume remaining binlog events

- Mark GTID pos
- Rename tables

Revertible Online DDL: how?

During REVERT VITESS_MIGRATION:

Create a new _vt.vreplication stream entry, a single
stream workflow

Populate with GTID pos from completed migration
Formulate new filter/rule query to point back to OLD
table

Keep _vt.copy_state empty for the new workflow
Tell VReplication to go on

To VReplication the new setup looks to be an
unfinished workflow, where row copy is complete,
and with binlog events still in queue

Revertible Online DDL:
CREATE & DROP

- CREATE TABLE and DROP TABLE statements are
revertible

- REVERT for a DROP TABLE reinstates the table
populated with data at time of DROP

- REVERT for CREATE TABLE vanishes the table

- As with ALTER TABLE, these REVERTSs are
revertible.

Recoverable Online DDL

- You run a schema migration

- It takes days and days

- Please. Don't. Let. There. Be. A. Failover.

- Sorry. This. Maintenance. Work. Will. Have. To. Wait.

Recoverable Online DDL: how?

- _vt.vreplication and _vt.copy_state committed
together with data changes.

- Bothtables are replicated as normal.

- However lagging a replica may be, _vt.vreplication
and _vt.copy_state on that replica are always
consistent with the data on that replica.

- In case of failover the replica becomes a primary.

- VReplication on the primary notices
—vt.vreplication and _vt.copy_state and proceeds
from that point on.

Recoverable Online DDL: how?

- Objective: “don’t care” approach. Do your normal
work and forget about whether a migration is
running.

- Status: “works on my machine”

- More formal validation/testing required

Declarative Online DDL

Say where you want to go, not how to get there.

Declarative Online DDL

DEMO

2

Declarative Online DDL: how?

- Inafull declarative approach you present your entire

schema
- This may not play well for known Vitess use case.

- Compromise: a hybrid approach. Per table, either:

- CREATE TABLE, or
- DROP TABLE
- Butnever ALTER TABLE

Declarative Online DDL: how?

Per table, Vitess compares existing schema with desired
schema.

- Creates a table if needed
- Drops atable if needed

- Evaluates a diff if needed
- Either diff is empty, or
- Diff isa ALTER TABLE statement, passed on to
VReplication/gh-ost/pt-osc as Online DDL.

Resources

Docs: vitess.io/docs/

Code: github.com/vitessio/vitess

Slack: vitess.slack.com

https://vitess.io/docs/
https://github.com/vitessio/vitess
https://vitess.slack.com/

Thank you!

Questions?

github.com/shlomi-noach
@ShlomiNoach

https://github.com/shlomi-noach
https://twitter.com/ShlomiNoach

