
Revertible, recoverable
schema migrations in Vitess

Shlomi Noach
PlanetScale

PerconaLive 2021

About me
Engineer at PlanetScale

Author of open source projects orchestrator, gh-ost,
freno and others

Maintainer for Vitess

Blog at http://openark.org

github.com/shlomi-noach
@ShlomiNoach

http://code.openark.org/
https://github.com/shlomi-noach
https://twitter.com/ShlomiNoach

Founded Feb. 2018 by co-creators of Vitess

~50 employees

HQ Mountain View, remote team

￼

Vitess
A database clustering system for horizontal scaling of
MySQL

● CNCF graduated project
● Open source, Apache 2.0 licence
● Contributors from around the community

Agenda
- Recap: proxy/tablet architecture
- Recap: Online DDL in Vitess
- Introducing VReplication
- Revertible, lossless schema changes
- Recoverable, resumable migrations
- Declarative schema changes (*)

(*) Bonus, hot off the git repo

Vitess architecture brief basics
Focus on VTTablet

Vitess architecture basics
Consider a common replication cluster

Vitess architecture basics
Each MySQL server is assigned a vttablet

- A daemon/sidecar
- Controls the mysqld process
- Interacts with the mysqld server
- Typically on same host as mysqld

VTTablet
- On primary, creates _vt schema on backend MySQL
- Manages state of some operations on _vt tables
- _vt schema data replicated as normal

Vitess architecture basics
In production you have multiple clusters

Vitess architecture basics
User and application traffic is routed via
vtgate

- A smart, stateless proxy
- Speaks the MySQL protocol
- Impersonates as a monolith MySQL

server
- Relays queries to vttablets

Vitess architecture basics
A vitess deployment will run multiple
vtgate servers for scale out

Vitess architecture basics
vtgate must transparently route queries
to correct clusters, to relevant shards

app

commerce
shard 0

commerce
shard 1

internal
unsharded

?

Vitess architecture basics
Queries route based on schema & sharding scheme

app

commerce
shard 0

commerce
shard 1

internal
unsharded

USE commerce;
SELECT order_id, price
 FROM orders
 WHERE customer_id=4;

Vitess architecture basics
topo: distributed key/value store

- Stores the state of vitess: schemas,
shards, sharding scheme, tablets,
roles, etc.

- etcd/consul/zookeeper
- Small dataset, mostly cached by

vtgate

commerce
shard 0

commerce
shard 1

internal
unsharded

Recap: Online DDL
Vitess supports online schema migrations natively

Previously presented:

- Native support for gh-ost
- Native support for pt-online-schema-change

mysql> SET @@ddl_strategy=’gh-ost’;
mysql> ALTER TABLE my_table ADD COLUMN my_col INT NOT NULL;

https://www.youtube.com/watch?v=iQYZ0dRe7O8
https://fosdem.org/2021/schedule/event/vitess/

https://vitess.io/docs/reference/vreplication/vreplication/

https://www.youtube.com/watch?v=iQYZ0dRe7O8
https://fosdem.org/2021/schedule/event/vitess/
https://vitess.io/docs/reference/vreplication/vreplication/

Recap: Online DDL
Automatically:

- Send DDL to appropriate shards
- Schedule migration
- Create & destroy migration account
- Run gh-ost/pt-online-schema-change
- Throttle
- Garbage-collect artifact tables

VReplication
A distributed flow in Vitess, that can:

- Move data from “here” to “there”
- Mutate the data on the fly
- Live

https://vitess.io/docs/reference/vreplication/vreplication/

https://vitess.io/docs/reference/vreplication/vreplication/

VReplication use cases
VReplication runs the following core Vitess
functionalities:

- Live resharding
- Materialized views
- Import from external data sources (e.g. Aurora)
- Moving tables across clusters

- With VTGate rerouting traffic to new location

VReplication
- A flow (workflow) can have 1 or more streams
- Each stream connects one source tablet (thereby a

source MySQL server) with one target (a target
MySQL server)

- There can be many-to-many streams, eg.. in a
resharding scenario

https://vitess.io/docs/reference/vreplication/vreplication/

https://vitess.io/docs/reference/vreplication/vreplication/

VReplication: MoveTables
Example: move large messages table out
of a crowded monolith cluster into a
dedicated sharded schema

- Move data
- Move traffic

monolith
unsharded

commerce
shard 0

commerce
shard 1

VReplication: MoveTables
Moving data:

- Assume table exists on target
schema/clusters

- Iterate existing table in monolith
cluster, a bunch of rows at a time

- Insert/apply each bunch of rows
onto commerce keyspace

- Tail monolith binary logs and apply
ongoing changes to messages table

monolith
unsharded

commerce
shard 0

commerce
shard 1

VReplication: MoveTables
Moving traffic (manual):

- User issues SwitchReads
- Vitess updates topo with new

routing rules
- VTGate notified about topo changes
- VTGate routes all read traffic on

messages to commerce
schema/clusters

monolith
unsharded

commerce
shard 0

commerce
shard 1

VReplication: MoveTables
Moving traffic (manual):

- User issues SwitchWrites
- Vitess updates topo with new

routing rules
- VTGate notified about topo changes
- VTGate routes all write traffic on

messages to commerce keyspace
- Client can later explicitly query

messages on commerce schema
rather than monolith schema

monolith
unsharded

commerce
shard 0

commerce
shard 1

VReplication: MoveTables
Reverse replication:

- It is possible to stream messages
changes back from commerce to
monolith

- Gives the app a path for failback

monolith
unsharded

commerce
shard 0

commerce
shard 1

VReplication for Online DDL
Same essentials as MoveTables, but:

- Source and target schemas are the
same.

- Automatic creation of target table in
new schema

- Automatic analysis of schema and
filter query

- Automatic cut-over
- Instead of SwitchWrites we switch

tables

monolith
unsharded

VReplication Online DDL
Looks just like a gh-ost or pt-osc online DDL:

mysql> SET @@ddl_strategy=’online’;
mysql> ALTER TABLE my_table ADD COLUMN my_col INT NOT NULL;

Added value:

- Internal to vitess, unified logic for moving data
around

- Super powers, courtesy VReplication’s logic

Revertible Online DDL
- Run a schema migration.
- Cut-over. Wait. What. This. Is. Wrong.
- Revert the migration. Lossless.

Revertible Online DDL
DEMO

Revertible Online DDL: how?
- VReplication uses two underlying tables:

- _vt.vreplication
- General purpose information
- Filter/rule query
- GTID pos
- Updates in same commit with binlog event changes

- _vt.copy_state
- Row-copy information
- Last known row copy range
- Empty on startup, empty on completion
- Updates in same commit with row copy

- These two tables formulate the state of a
VReplication stream

Revertible Online DDL: how?
During “normal” ALTER TABLE:

- On cut-over, disable writes on original table
- Consume remaining binlog events
- Mark GTID pos
- Rename tables

During REVERT VITESS_MIGRATION:

- Create a new _vt.vreplication stream entry, a single
stream workflow

- Populate with GTID pos from completed migration
- Formulate new filter/rule query to point back to OLD

table
- Keep _vt.copy_state empty for the new workflow
- Tell VReplication to go on
- To VReplication the new setup looks to be an

unfinished workflow, where row copy is complete,
and with binlog events still in queue

Revertible Online DDL: how?

- CREATE TABLE and DROP TABLE statements are
revertible

- REVERT for a DROP TABLE reinstates the table
populated with data at time of DROP

- REVERT for CREATE TABLE vanishes the table
- As with ALTER TABLE, these REVERTs are

revertible.

Revertible Online DDL:
CREATE & DROP

- You run a schema migration
- It takes days and days
- Please. Don’t. Let. There. Be. A. Failover.
- Sorry. This. Maintenance. Work. Will. Have. To. Wait.

Recoverable Online DDL

- _vt.vreplication and _vt.copy_state committed
together with data changes.

- Both tables are replicated as normal.
- However lagging a replica may be, _vt.vreplication

and _vt.copy_state on that replica are always
consistent with the data on that replica.

- In case of failover the replica becomes a primary.
- VReplication on the primary notices

_vt.vreplication and _vt.copy_state and proceeds
from that point on.

Recoverable Online DDL: how?

- Objective: “don’t care” approach. Do your normal
work and forget about whether a migration is
running.

- Status: “works on my machine”
- More formal validation/testing required

Recoverable Online DDL: how?

Say where you want to go, not how to get there.

Declarative Online DDL

DEMO

Declarative Online DDL

- In a full declarative approach you present your entire
schema

- This may not play well for known Vitess use case.
- Compromise: a hybrid approach. Per table, either:

- CREATE TABLE, or
- DROP TABLE
- But never ALTER TABLE

Declarative Online DDL: how?

Per table, Vitess compares existing schema with desired
schema.

- Creates a table if needed
- Drops a table if needed
- Evaluates a diff if needed

- Either diff is empty, or
- Diff is a ALTER TABLE statement, passed on to

VReplication/gh-ost/pt-osc as Online DDL.

Declarative Online DDL: how?

Resources
Docs: vitess.io/docs/

Code: github.com/vitessio/vitess

Slack: vitess.slack.com

https://vitess.io/docs/
https://github.com/vitessio/vitess
https://vitess.slack.com/

Thank you!
Questions?

github.com/shlomi-noach
@ShlomiNoach

https://github.com/shlomi-noach
https://twitter.com/ShlomiNoach

