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Agenda

● Introduction
● What are we storing?
● Data Representation and Nested 

Schema Evolution
● Writer Worries and How to Wipe 

them Away
● Staging Tables FTW
● Datalake Replication Lag Tracking
● Performance Time!



Unified Profile Data Ingestion

Unified Profile
Experience Data Model

Adobe Campaign

AEM

Adobe Analytics

Adobe 
AdCloud

Change Feed Streaming 
Stats Generation

Single Tenant
Multi Tenant



Linking Identities



Data Layout At a Glance
An Idea about how the graph linkages are stored

primaryId relatedIds field1 field2 field1000
123 123 a b c

456 456 d e f

123 123 d e l

789 789,101 x y z

101 789,101 x u p

Conditions
• primaryId does not change
• relatedIds can change



New Record comes in
Indicating a new linkage, causing a change in graph membership

primaryId relatedId field1 field2 field1000

103 103,789,101 q w r

789 103,789,101 x y z

101 103,789,101 x y z

primaryId relatedId field1 field2 field1000

103 103,789,101 q w r

New Record comes in linking 103 with  789 and 101

Causes a cascading change in rows of 789 and 101



Main Access Pattern
Query 1

Query 2

Query 3

Query 1000

Multiple Queries over 1 consolidated row



Complexities?
• Nested Fields

• a.b.c.d[*].e nested hairiness!
• Arrays!
• MapType

• Every Tenant has a different Schema!

• Schema evolves constantly
• Fields can get deleted, updated.

• Multiple Sources
• Streaming
• Batch



Scale?

• Tenants have 10+ Billions of rows
• PBs of data
• Million RPS peak across the system
• Triggers multiple downstream applications

• Segmentation
• Activation



What  is  DeltaLake?
From delta.io : Delta Lake is an open-source project that enables building a Lakehouse architecture
on top of existing storage systems such as S3, ADLS, GCS, and HDFS.

ACID 
Transactions

Time Travel 
(data 

versioning)
Uses Parquet 
Underneath

Schema 
Enforcement 
and Schema 

Evolution
Audit History Updates and 

Deletes Support

Key Features

http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf


Delta lake in Practice 

UPSERT

SQL Compatible



Writer Worries and How to Wipe them Away

• Concurrency Conflicts

• Column size
• When individual column data exceeds 2GB, we see degradation in writes or OOM

• Update frequency
• Too frequent updates cause underlying filestore metadata issues.
• This is because every transacation on an individual parquet causes CoW, 

• More updates => more rewrites on HDFS

• Too Many small files !!!



CDC (existing)

Batch Ingestion / Streaming 
Ingestion /

API based Ingest 

Mutation Apps
CosmosDB

CDC

1. Send Request to 
Cosmos

2.Ack

3.Emit CDC

Consumed by
• Stats
• Edge
• etc



Dataflow with DeltaLake
primary
Id relatedId field

1 field2 field1000

103 103,789,101 q w r

789 103,789,101 x y z

101 103,789,101 x y z Cosmos
DB

primaryId relatedId field1 field1000

103 103,789,101 q r

primaryId relatedId jsonString
103 103,789,101 <jsonStr>

789 103,789,101 <jsonStr>

101 103,789,101 <jsonStr>

Staging Table
Change Feed CDC 

Raw Table (per tenant)

Check for Work every 
X minutes

UPSERT/DELETE into 
Raw Table

Fetch 
Records 

to process

APPEND only!

CDC 
Dumper

Backfill

Long Running 
Streaming 
Application

Processor

Partitioned by tenant and  15 min time intervals

TenantLock in Redis



Staging Tables FTW
Fan-In pattern vs Fan-out

• Multiple Source Writers Issue Solved
• By centralizing all reads from CDC, since ALL writes generate a CDC

• Staging Table in APPEND ONLY mode
• No conflicts while writing to it

• Filter out. Bad data > thresholds before making it to 
Raw Table

• Batch Writes by reading larger blocks of data from 
Staging Table
• Since it acts time aware message buffer



Staging Table Logical 
View

ProgressMap



Why choose JSON String format?
§ We are doing a lazy Schema on-read approach.

▪ Yes. this is an anti-pattern.

§ Nested Schema Evolution was not supported on update in delta in 2020
▪ Supported with latest version

§ We want to apply conflict resolution before upsert-ing
▪ Eg. resolveAndMerge(newData, oldData)
▪ UDF’s are strict on types, with the plethora of difference schemas , it is crazy to manage UDF per 

org in Multi tenant fashion
▪ Now we just have simple JSON merge udfs

▪ We use json-iter which is very efficient in loading partial bits of json and in manipulating them.

§ Don’t you lose predicate pushdown?
▪ We have pulled out all main push-down filters to individual columns

▪ Eg. timestamp, recordType, id, etc.
▪ Profile workloads are mainly scan based since we can run 1000’s of queries at a single time.
▪ Reading the whole JSON string from datalake is much faster and cheaper than reading from 

Cosmos for 20% of all fields. 



Schema On Read is more 
future safe approach for 
raw data
§ Wrangling Spark Structs is not 

user friendly
§ JSON schema is messy

▪ Crazy nesting
▪ Add maps to the equation, just the 

schema will be in MBs

§ Schema on Read using Json-
iter means we can read what 
we need on a row by row basis

§ Materialized Views WILL have 
structs!



Partition Scheme of Raw records

• RawRecords Delta Table
• recordType

• dataSetId
• timestamp (key-value records will use DEFAULT value)

z-order on primaryId

z-order - Colocate column information in the same set of files using locality-preserving space-filling curves

https://en.wikipedia.org/wiki/Space-filling_curve




Replication Lag – 2 types

• CDC Lag from Kafka
• Tells us how much more work we need to do to catch up to write to Staging 

Table

• How we track Lag on a per tenant basis
• We track Max(TimeStamp) in CDC per org
• We track Max(TSKEY) processed in Processor
• Difference gives us rough lag of replication



Merge/UPSERT Performance

Action: UPSERT CDC stage into fragment Time Taken

170 K CDC Records – Maps to 100k 
Rows in Raw Table 15 seconds

1.7 Million CDC Records – Maps to 1 
Million Rows in Raw Table 61 seconds

Live Traffic Usecase: How long does it take X CDC messages to get upserted into Raw Table



Job Performance Time!

Hot Store (NoSQL Store) Delta Lake

Size of Data 1 TB 64 GB

Number of Partitions 80 189

Job Cores Used 112 112

Job Runtime 3 hours 25 mins



TakeAways

• Scan IO speed from datalake >>> Read from Hot Store
• Reasonably fast eventually consistent replication within 

minutes
• More partitions means better Spark executor core 

utilization
• Potential to aggressively TTL data in hot store
• More  downstream materialization !!!
• Incremental Computation Framework thanks to Staging 

tables!


