

Massive Data Processing in Adobe
using Delta Lake

Yeshwanth Vijayakumar
Sr. Engineering Manager/Architect @ Adobe

Agenda

Introduction

What are we storing?

Data Representation and Nested
Schema Evolution

Writer Worries and How to Wipe
them Away

Staging Tables FTW

Datalake Replication Lag Tracking
Performance Time!

Unified Profile Data Ingestion

Adobe Campaign
JSON

14 SpoﬁF

AEM

>l JSON

Protocy

Adobe Analytlcs

Adobe
AdCloud

Experience Data Model

Unified Profile

Single Tenant

Change Feed
Multi Tenant

Streaming
Stats Generation

Linking Identities

Online Data

-

Online Data

i

—
—?

Offline Data

kS

Anonymous Identities

l

Identity Service

e

Generator

Identity Graph

Q

arun@domain.com

API

82167672165

GT8ERW8tOK70g

ZX8EUWSLLP7Qn

—_—

3578

IP Address ECID AMO ID

192.18.86.50 GTBERWS8tOK70g kPL1

192.18.86.50 ZXB8EUWStLP7Qn POKN
Known Identities

Login ID ECID Loyalty ID

arun@domain.com ZX8EUWStLP7Qn 3690098

michelle@domain.com GZYIB-h_hACHtIR 5846890
Known Identities

Email ID Loyalty ID CRMID

arun@domain.com 82167672165 3578

rahul@domain.com 34657616546 2209

Data Layout At a Glance

An Idea about how the graph linkages are stored

Conditions

« primaryld does not change
 relatedlds can change

primaryld | relatedlds | field1 field2 field1000
123 123 a b C
456 456 d e f
123 123 d e |

New Record comes in

Indicating a new linkage, causing a change in graph membership

New Record comes in linking 103 with 789 and 101

primaryld relatedid field1 field2 field1000
103 103,789,101 q w r
Causes a cascading change in rows of 789 and 101
primaryld relatedid field1 field2 field1000
103 103,789,101 q w r
789 103,789,101 X y z
101 103,789,101 X y z

Main Access Pattern

Multiple Queries over 1 consolidated row

rawRecords
.groupBy($"relatedIds")
.mapPartitons{
(relatedIds, records) => {

results = executeQueries(records)
saveResultsToSink(results, relatedIds)

Complexities?
Nested Fields

- a.b.c.d[*].e nested hairiness!

- Arrays!
- MapType

Multiple Sources

- Streaming
- Batch

Every Tenant has a different Schema!

Schema evolves constantly
- Fields can get deleted, updated.

{C

"id" :"xid1-sourcel”,
"ky" : "GboEQWN4aWQx ",
"ek" :"sourcel",
"_ts":1539752290,

"et": { &

"kv":{ &
"identities" :[&
{&
"id" : " luke@adobe .com”,
"namespace" : { [
"code" :"email”
}
}
],
"person” :{ [
"name" : { (&
"firstName" :"Luke",
"lastName" : "Skywalker"

Scale?

Average Records Processed Per Second

3.75 Mil
3.50 Mil
3.25 Mil

- Tenants have 10+ Billions of rows

2.75 Mil

- PBs of data

2.25 Mil
5/23 5/25 5/27

. M i | | i O n R P S D e a k a C rO S S t h e Sy S t e m = avg(sum(aep:core:unified_profile:streaming:nonnull:total:num:rec

- Triggers multiple downstream applications
- Segmentation

- Activation

What Is DeltalLake? A

DELTA LAKE

From delta.io : Delta Lake is an open-source project that enables building a Lakehouse architecture
on top of existing storage systems such as S3, ADLS, GCS, and HDFS.

Key Features

Time Travel
(data Uses Parquet

Underneath

ACID

Transactions versioning)

Schema
Enforcement
and Schema

Evolution

o Updates and
Audit History Deletes Support

http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

Delta lake in Practice

dataframe dataframe

.write .write

.format ("parquet") .format("delta")

.save("/data") .save("/data")

UPSERT
SQL Compatible
deltaTable.as("oldData") Q P

.merge(

newData.as("newData"), UPDATE events SET eventType = 'click' WHERE eventType = 'clck’

"oldData.id = newData.id")
‘whenMatched UPDATE delta. /data/events/ SET eventType = 'click' WHERE eventType = 'clck'
.update(Map("id" -> col("newData.id")))
.whenNotMatched
.insert(Map("id" -> col("newData.id")))

.execute()

Writer Worries and How to Wipe them Away

- Concurrency Conflicts

INSERT UPDATE, DELETE, MERGE INTO COMPACTION
INSERT Cannot conflict
UPDATE, DELETE, MERGE INTO Can conflict Can conflict
COMPACTION Cannot conflict Can conflict Can conflict

- Column size
- When individual column data exceeds 2GB, we see degradation in writes or OOM

- Update frequency
- Too frequent updates cause underlying filestore metadata issues.
- This is because every transacation on an individual parquet causes CoW,

More updates => more rewrites on HDFS

- Too Many small files !!!

CDC (existing)

CosmosDB
Mutation Apps 1. Send Request to
Cosmos

Consumed by

Batch Ingestion / Streaming « Stats
Ingestion / Edge
API based Ingest + etc

3.Emit CDC

— CDC

v

i field| . .
PSS relatedid |G| field2 | field1000 Raw Table (per tenant) oecea Caxe
103 103,789,101 q w r primaryld relatedld jsonString
789 103,789,101 X y z 103 103,789,101 <jsonStr>
101 103,789,101 X Yy z BaCkﬂ" 789 103,789,101 <jsonStr>
101 103,789,101 <jsonStr>
TenantLock in Redis UPSERT/DELETE into
Raw Table
Fetch /7 M
Records
Change FeedCDC AW to process Processor
Staging Table
primaryld relatedld field1 |[field1000 Q
103 103,789,101 q r DELTA LAKE Check for Work every
X minutes
|
Long Running APPEND only!
Streaming Partitioned by tenant and 15 min time intervals

Application

Staging Tables FTW

Fan-In pattern vs Fan-out

- Multiple Source Writers Issue Solved
- By centralizing all reads from CDC, since ALL writes generate a CDC

- Staging Table in APPEND ONLY mode

- No conflicts while writing to it

- Filter out. Bad data > thresholds before making it to
Raw Table

- Batch Writes by reading larger blocks of data from
Staging Table

- Since it acts time aware message buffer

Staging Table Logical
View

<TSKEY= 2021-01-01-09-15—-Quarter=01 > -
|

x1-cdcRecord, ProgressMap
x2-cdcRecord,

x3-cdcRecord,
x5-cdcRecord

AL R e L

tenant2 2021-01-02-07-10-Quarter=04

<TSKEY= 2021-01-01-09-15-Quarter=02 > - tenant3 2021-01-01-11-19-Quarter=03
|

x2-cdcRecord,
x7-cdcRecord

]

<TSKEY= 2021-01-01-09-15-Quarter=03 > - [
x6-cdcRecord,
x9-cdcRecord

Why choose JSON String format?

= We are doing alazy Schema on-read approach.
Yes. this is an anti-pattern.

= Nested Schema Evolution was not supported on update in deltain 2020
- Supported with latest version

= We want to apply conflict resolution before upsert-ing
Eg. resolveAndMerge(newData, oldData)

UDF’s are strict on types, with the plethora of difference schemas , it is crazy to manage UDF per
org in Multi tenant fashion

Now we just have simple JSON merge udfs

We use json-iter which is very efficient in loading partial bits of json and in manipulating them.

! Dontyou lose predicate pushdown?

We have pulled out all main push-down filters to individual columns
Eg. timestamp, recordType, id, etc.

Profile workloads are mainly scan based since we can run 1000’s of queries at a single time.

Reading the whole JSON string from datalake is much faster and cheaper than reading from
Cosmos for 20% of all fields.

Schema On Read is more

future safe approach for
raw data

= Wrangling Spark Structs is not
user friendly

« JSON schema is messy

- Crazy nesting

- Add maps to the equation, just the
schema will be in MBs

= Schema on Read using Json-
iter means we can read what
we need on arow by row basis

= Materialized Views WILL have
structs!

Partition Scheme of Raw records

« RawRecords Delta Table
* recordType
« dataSetld
e {i mestamp (key-value records will use DEFAULT value)
z-order on primaryld

z-order - Colocate column information in the same set of files using locality-preserving space-filling curves

https://en.wikipedia.org/wiki/Space-filling_curve

Cmd 42

Error runni
1 %fs

2 1s /tmp/atlastest/4932D947587C1DF40A49423CR@AdobeOrg.raw.partitioned.delta

path name size
1 dbfs:/tmp/atlastest/4932D947587C1DF40A49423C@AdobeOrg.raw.partitioned.delta/_delta_log/ _delta_log/ 0
2 dbfs:/tmp/atlastest/4932D947587C1DF40A49423C@AdobeOrg.raw.partitioned.delta/rt=__HIVE_DEFAULT_PARTITION__/ rt=__HIVE_DEFAULT_PARTITION_/ O
3 dbfs:/tmp/atlastest/4932D947587C1DF40A49423C@AdobeOrg.raw.partitioned.delta/rt=identity/ rt=identity/ 0
4 dbfs:/tmp/atlastest/4932D947587C1DF40A49423C@AdobeOrg.raw.partitioned.delta/rt=keyvalue/ rt=keyvalue/ 0
5 dbfs:/tmp/atlastest/4932D947587C1DF40A49423C@AdobeOrg.raw.partitioned.delta/rt=timeseries/ rt=timeseries/ 0

Showing all 5 rows.

Cmd 42

1| %fs
2 1s adl://datalakeeppvdoocjhd2.azuredatalakestore.net/core/profile/atlas/v1/4932D947587C1DF40A49423C@AdobeOrg.raw.partitioned.delta/rt=timeseries/ek=5d64ec86b7469b1648cf1295/
<)

path name size
adl://datalakeeppvdoocjhd2.azuredatalakestore.net/core/profile/atlas/v1/4932D947587C1DF40A49423C@AdobeOrg.raw.partitio tsdate=50376-03-13/ 0

Showing all 1 rows.

Replication Lag - 2 types
- CDC Lag from Kafka

- Tells us how much more work we need to do to catch up to write to Staging
Table

- How we track Lag on a per tenant basis
- We track Max(TimeStamp) in CDC per org
- We track Max(TSKEY) processed in Processor
- Difference gives us rough lag of replication

Merge/UPSERT Performance

Live Traffic Usecase: How long does it take X CDC messages to get upserted into Raw Table

Test cluster

Cluster

84G, 24Core, DBR 6.6, Standard_DS4_v2 (28.0 GB Memory, 8 Cores, 1.5 DBU), 1 driver, 2-8 workers

Action: UPSERT CDC stage into fragment

Time Taken
170 K CDC Records — Maps to 100k
) 15 seconds
Rows in Raw Table
1.7 Million CDC Records — Maps to 1 61 seconds
Million Rows in Raw Table

spark.sql ("set spark.databricks.delta.autoCompact.enabled = true")
spark.sql ("set spark.databricks.delta.optimizeWrite.enabled = true")

Job Performance Time!

A

DELTA LAKE

Hot Store (NoSQL Store) Delta Lake
Size of Data 1TB 64 GB
Number of Partitions 80 189
Job Cores Used 112 112
Job Runtime 3 hours 25 mins

TakeAways

- Scan |0 speed from datalake >>> Read from Hot Store

- Reasonably fast eventually consistent replication within
minutes

- More partitions means better Spark executor core
utilization

- Potential to aggressively TTL data in hot store
- More downstream materialization !!!

- Incremental Computation Framework thanks to Staging
tables!

